Weather extremes and street life in India—Implications of Fuzzy Cognitive Mapping as a new tool for semi-quantitative impact assessment and ranking of adaptation measures

[1]  R. Axelrod Structure of decision : the cognitive maps of political elites , 2015 .

[2]  M. Wildenberg,et al.  Subjective realities of climate change: how mental maps of impacts deliver socially sensible adaptation options , 2013, Sustainability Science.

[3]  W. Solecki Urban environmental challenges and climate change action in New York City , 2012 .

[4]  Anna L. Brown,et al.  From practice to theory: emerging lessons from Asia for building urban climate change resilience , 2012 .

[5]  R. Vanderbei Local Warming , 2012, SIAM Rev..

[6]  J. Qiu Urbanization contributed to Beijing storms , 2012, Nature.

[7]  Eric J. Johnson,et al.  Local Warming , 2011, Psychological science.

[8]  J. Tollefson Environment: Mexico's scientist in chief , 2010, Nature.

[9]  D. Sharma,et al.  Mainstreaming climate change adaptation in Indian cities , 2010 .

[10]  John R. Fairweather,et al.  Farmer models of socio-ecologic systems: Application of causal mapping across multiple locations , 2010 .

[11]  R. Mearns,et al.  Social dimensions of climate change : equity and vulnerability in a warming world , 2009 .

[12]  Kasper Kok,et al.  The potential of Fuzzy Cognitive Maps for semi-quantitative scenario development, with an example from Brazil , 2009 .

[13]  Tight,et al.  City-scale integrated assessment of climate impacts, adaptation and mitigation , 2009 .

[14]  Voula C. Georgopoulos,et al.  Fuzzy cognitive map architectures for medical decision support systems , 2008, Appl. Soft Comput..

[15]  Andrew P. Yonelinas,et al.  Differential time-dependent effects of emotion on recollective experience and memory for contextual information , 2008, Cognition.

[16]  H. Benamer L'expérience est mémoire , 2007 .

[17]  Uygar Ozesmi Ecosystems in the Mind: Fuzzy Cognitive Maps of the Kizilirmak Delta Wetlands in Turkey , 2006, q-bio/0603022.

[18]  M. Quaddus,et al.  Group Decision Support Using Fuzzy Cognitive Maps for Causal Reasoning , 2004 .

[19]  Uygar Özesmi,et al.  Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach , 2004 .

[20]  Lívia Markíczy,et al.  A Method for Eliciting and Comparing Causal Maps , 1995 .

[21]  P. Slovic Perception of risk. , 1987, Science.

[22]  Norman,et al.  Structural Models: An Introduction to the Theory of Directed Graphs. , 1966 .

[23]  T. Stocker,et al.  Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of IPCC Intergovernmental Panel on Climate Change , 2012 .

[24]  Oleksandr Kit,et al.  Assessment of climate change - induced vulnerability to floods in Hyderabad, India, using remote sensing data , 2011 .

[25]  M. Wildenberg,et al.  Understanding Potential Climate Change Impacts and Adaptation Options in Indian Megacities , 2011 .

[26]  C. Moser,et al.  Towards pro-poor adaptation to climate change in the urban centers of low- and middle-income countries,' , 2010 .

[27]  Michael Glykas,et al.  Fuzzy Cognitive Maps , 2010 .

[28]  Jesper Stage,et al.  Climate change adaptation in developing countries: issues and perspectives for economic analysis. , 2010 .

[29]  E. Schipper,et al.  Religion as an integral part of determining and reducing Climate Change and Disaster Risk: An agenda for research , 2010 .

[30]  Robert J. Nicholls,et al.  Assessing the costs of adaptation to climate change: a review of the UNFCCC and other recent estimates , 2009 .

[31]  P. Sakdapolrak,et al.  The megacity resilience framework , 2009 .

[32]  A. Strauss,et al.  Excerpts from : The Discovery of Grounded Theory : Strategies for Qualitative Research , 2008 .

[33]  J. Banthia Provisional population totals , 2001 .

[34]  Andy P. Field,et al.  Discovering Statistics Using SPSS , 2000 .

[35]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..