Gorenstein Projective Dimension Relative to a Semidualizing Bimodule

Let S and R be rings and S C R a semidualizing bimodule. We investigate the relation between the G C -syzygy with the C-syzygy of a module as well as the relation between the G C -projective resolution and the projective resolution of a module. As a consequence, we get that if is an exact sequence of S-modules with all G i , G i G C -projective, such that Hom S (𝔾, T) is still exact for any module T which is isomorphic to a direct summand of direct sums of copies of S C, then Im(G 0 → G 0) is also G C -projective. We obtain a criterion for computing the G C -projective dimension of modules. When S C R is a faithfully semidualizing bimodule, we study the Foxby equivalence between the subclasses of the Auslander class and that of the Bass class with respect to C.

[1]  L. Christensen,et al.  Beyond totally reflexive modules and back , 2008, 0812.3807.

[2]  Yuxian Geng,et al.  W-Gorenstein modules , 2011 .

[3]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[4]  S. Sather-Wagstaff,et al.  Tate cohomology with respect to semidualizing modules , 2009, 0907.4969.

[5]  Jiaqun Wei,et al.  ω-Gorenstein Modules , 2008 .

[6]  S. Sather-Wagstaff,et al.  Stability of Gorenstein categories , 2007, math/0703644.

[7]  Ryo Takahashi,et al.  Homological aspects of semidualizing modules , 2007, math/0703643.

[8]  D. White,et al.  Foxby equivalence over associative rings , 2006, math/0611838.

[9]  D. White Gorenstein projective dimension with respect to a semidualizing module , 2006, math/0611711.

[10]  S. Iyengar,et al.  Gorenstein dimension of modules over homomorphisms , 2005, math/0504340.

[11]  Peter Jørgensen,et al.  Semi-dualizing modules and related Gorenstein homological dimensions , 2004, math/0405526.

[12]  Henrik Holm,et al.  Gorenstein homological dimensions , 2004 .

[13]  L. Christensen,et al.  On Gorenstein projective, injective and flat dimensions—A functorial description with applications , 2004, math/0403156.

[14]  Alex Martsinkovsky,et al.  Absolute, Relative, and Tate Cohomology of Modules of Finite Gorenstein Dimension , 2002 .

[15]  Overtoun M. G. Jenda,et al.  Gorenstein injective and projective modules , 1995 .

[16]  E. Enochs Injective and flat covers, envelopes and resolvents , 1981 .

[17]  Y. Iwanaga On rings with finite self-injective dimension II , 1980 .

[18]  M. Bridger,et al.  Stable Module Theory , 1969 .