Low-Loss Plasmonic Dielectric Nanoresonators.

Material losses in metals are a central bottleneck in plasmonics for many applications. Here we propose and theoretically demonstrate that metal losses can be successfully mitigated with dielectric particles on metallic films, giving rise to hybrid dielectric-metal resonances. In the far field, they yield strong and efficient scattering, beyond even the theoretical limits of all-metal and all-dielectric structures. In the near field, they offer high Purcell factor (>5000), high quantum efficiency (>90%), and highly directional emission at visible and infrared wavelengths. Their quality factors can be readily tailored from plasmonic-like (∼10) to dielectric-like (∼103), with wide control over the individual resonant coupling to photon, plasmon, and dissipative channels. Compared with conventional plasmonic nanostructures, such resonances show robustness against detrimental nonlocal effects and provide higher field enhancement at extreme nanoscopic sizes and spacings. These hybrid resonances equip plasmonics with high efficiency, which has been the predominant goal since the field's inception.

[1]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[2]  J. Khurgin Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Antti-Pekka Jauho,et al.  Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material. , 2016, Physical review letters.

[4]  R. Boyd,et al.  Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers. , 2016, Optics express.

[5]  Á. Rubio,et al.  Quantum plasmonics: from jellium models to ab initio calculations , 2016 .

[6]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[7]  J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[8]  M. Soljačić,et al.  Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics. , 2016, Nano letters.

[9]  T. Shahbazyan Local Density of States for Nanoplasmonics. , 2016, Physical review letters.

[10]  P. Lalanne,et al.  Quenching, Plasmonic, and Radiative Decays in Nanogap Emitting Devices , 2015, 1510.06693.

[11]  P. Lalanne,et al.  Near-to-Far Field Transformations for Radiative and Guided Waves , 2015, 1510.06344.

[12]  Steven G. Johnson,et al.  Shape-Independent Limits to Near-Field Radiative Heat Transfer. , 2015, Physical review letters.

[13]  Steven G. Johnson,et al.  Fundamental limits to optical response in absorptive systems. , 2015, Optics express.

[14]  M. Kamp,et al.  Electrically driven optical antennas , 2015, Nature Photonics.

[15]  M. Besbes,et al.  Fundamental limits for light absorption and scattering induced by cooperative electromagnetic interactions , 2015, 1502.02409.

[16]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[17]  Ming C. Wu,et al.  Optical antenna enhanced spontaneous emission , 2015, Proceedings of the National Academy of Sciences.

[18]  Yuri S. Kivshar,et al.  Hybrid nanoantennas for directional emission enhancement , 2014 .

[19]  A. Locatelli,et al.  Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. , 2014, Nature nanotechnology.

[20]  J. Khurgin How to deal with the loss in plasmonics and metamaterials. , 2014, Nature nanotechnology.

[21]  David R. Smith,et al.  Coupled-mode theory for film-coupled plasmonic nanocubes , 2014 .

[22]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[23]  Xiaoqin Li,et al.  Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver , 2014, Advanced materials.

[24]  David R. Smith,et al.  Control of radiative processes using tunable plasmonic nanopatch antennas. , 2014, Nano letters.

[25]  Yi Cui,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[26]  Steven G. Johnson,et al.  Fundamental limits to extinction by metallic nanoparticles. , 2014, Physical review letters.

[27]  N. Mortensen,et al.  A generalized non-local optical response theory for plasmonic nanostructures , 2013, Nature Communications.

[28]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[29]  Anatoly V. Zayats,et al.  Active Plasmonics and Tuneable Plasmonic Metamaterials: Zayats/Active , 2013 .

[30]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[31]  Shunsuke Murai,et al.  Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources , 2013, Light: Science & Applications.

[32]  S. Fan,et al.  Upper bound on the modal material loss rate in plasmonic and metamaterial systems. , 2013, Physical review letters.

[33]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[34]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[35]  Lukas Novotny,et al.  Demonstration of zero optical backscattering from single nanoparticles. , 2012, Nano letters.

[36]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[37]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[38]  P. Senellart,et al.  Controlling spontaneous emission with plasmonic optical patch antennas. , 2012, Nano letters.

[39]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[40]  J. Khurgin,et al.  Reflecting upon the losses in plasmonics and metamaterials , 2012 .

[41]  Yuri S. Kivshar,et al.  All-dielectric optical nanoantennas. , 2012, Optics express.

[42]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[43]  M. Kafesaki,et al.  A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics , 2012, Nature Photonics.

[44]  P. Lalanne,et al.  Proposal for compact solid-state III-V single-plasmon sources , 2012, 1202.6419.

[45]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[46]  Habib Ammari,et al.  Spectral Theory of a Neumann–Poincaré-Type Operator and Analysis of Cloaking Due to Anomalous Localized Resonance , 2011, 1212.5066.

[47]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[48]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[49]  L. Novotný,et al.  Antennas for light , 2011 .

[50]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[51]  Harald Giessen,et al.  Directing Light Emission from Quantum Dots , 2010, Science.

[52]  Shanhui Fan,et al.  Superscattering of light from subwavelength nanostructures. , 2010, Physical review letters.

[53]  Jacob B. Khurgin,et al.  In search of the elusive lossless metal , 2010 .

[54]  Nicolas Bonod,et al.  Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission. , 2010, ACS nano.

[55]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[56]  J. Greffet,et al.  Optical patch antennas for single photon emission using surface plasmon resonances. , 2010, Physical review letters.

[57]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[58]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[59]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[60]  Stephen R. Forrest,et al.  Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids , 2008 .

[61]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[62]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[63]  M. Gustafsson,et al.  Physical limitations on antennas of arbitrary shape , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  Vahid Sandoghdar,et al.  Design of plasmonic nanoantennae for enhancing spontaneous emission. , 2007, Optics letters.

[65]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[66]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[67]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[68]  Reuven Gordon,et al.  Light in a subwavelength slit in a metal: Propagation and reflection , 2006 .

[69]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[70]  A. Henglein,et al.  Luminescent colloidal silicon particles , 1994 .

[71]  A. Zimmermann,et al.  What is the lowest refractive index of an organic polymer , 1991 .

[72]  M. Cardona,et al.  The dielectric function of AlSb from 1.4 to 5.8 eV determined by spectroscopic ellipsometry , 1989 .

[73]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[74]  Anatoly V. Zayats,et al.  Active plasmonics and tuneable plasmonic metamaterials , 2013 .

[75]  P. Feibelman Surface electromagnetic fields , 1982 .