A machine learning approach for identification and classification of symbiotic stars using 2MASS and WISE

In this second paper in a series of papers based on the most-up-to-date catalogue of symbiotic stars (SySts), we present a new approach for identifying and distinguishing SySts from other Halpha emitters in photometric surveys using machine learning algorithms such as classification tree, linear discriminant analysis, and K-nearest neighbour. The motivation behind of this work is to seek for possible colour indices in the regime of near- and mid-infrared covered by the 2MASS and WISE surveys. A number of diagnostic colour-colour diagrams are generated for all the known Galactic SySts and several classes of stellar objects that mimic SySts such as planetary nebulae, post-AGB, Mira, single K and M giants, cataclysmic variables, Be, AeBe, YSO, weak and classical T Tauri stars, and Wolf-Rayet. The classification tree algorithm unveils that primarily J-H, W1-W4 and Ks-W3 and secondarily H-W2, W1-W2 and W3-W4 are ideal colour indices to identify SySts. Linear discriminant analysis method is also applied to determine the linear combination of 2MASS and AllWISE magnitudes that better distinguish SySts. The probability of a source being a SySt is determined using the K-nearest neighbour method on the LDA components. By applying our classification tree model to the list of candidate SySts (Paper I), the IPHAS list of candidate SySts, and the DR2 VPHAS+ catalogue, we find 125 (72 new candidates) sources that pass our criteria while we also recover 90 per cent of the known Galactic SySts.

[1]  X. Koenig,et al.  New Young Star Candidates in the Taurus-Auriga Region as Selected From WISE , 2011, 1106.5080.

[2]  A. Skopal,et al.  Wind mass transfer in S-type symbiotic binaries I. Focusing by the wind compression model , 2014, 1410.7674.

[3]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[4]  M. Redman,et al.  A morpho-kinematic and spectroscopic study of the bipolar nebulae: M 2-9, Mz 3, and Hen 2-104 , 2015, 1509.05448.

[5]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[6]  S. R. Pottasch,et al.  A spectroscopic atlas of post-AGB stars and planetary nebulae selected from the IRAS point source catalogue , 2006, astro-ph/0608080.

[7]  M. C. Díaz-Martín,et al.  J-PLUS: The Javalambre Photometric Local Universe Survey , 2015, Astronomy & Astrophysics.

[8]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[9]  M. Sullivan,et al.  PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor , 2012, Science.

[10]  D. Frew,et al.  New light on Galactic post-asymptotic giant branch stars - I. First distance catalogue , 2014, 1403.7230.

[11]  M. Groenewegen,et al.  The VMC survey II : A multi-wavelength study of LMC planetary nebulae and their mimics , 2011, 1105.5732.

[12]  E. Bergin,et al.  HIGH-RESOLUTION ULTRAVIOLET RADIATION FIELDS OF CLASSICAL T TAURI STARS , 2014, 1402.6341.

[13]  R. D. Stefano THE PROGENITORS OF TYPE Ia SUPERNOVAE. II. ARE THEY DOUBLE-DEGENERATE BINARIES? THE SYMBIOTIC CHANNEL , 2010, 1004.1193.

[14]  A. Udalski,et al.  Symbiotic stars and other Hα emission-line stars towards the Galactic bulge , 2013, 1305.4863.

[15]  J. P. Phillips,et al.  An analysis of 2MASS near-infrared photometry for galactic planetary nebulae , 2005 .

[16]  Foster J. Provost,et al.  Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction , 2003, J. Artif. Intell. Res..

[17]  C. Rodrigues,et al.  THE ALIGNMENT OF THE POLARIZATION OF HERBIG Ae/Be STARS WITH THE INTERSTELLAR MAGNETIC FIELD , 2009, 0904.4812.

[18]  C. Giammanco,et al.  IPHAS and the symbiotic stars. II. New discoveries and a sample of the most common mimics , 2009, 0910.5930.

[19]  R. Corradi,et al.  Symbiotic Stars Probing Stellar Evolution , 2003 .

[20]  M. Irwin,et al.  Candidate planetary nebulae in the IPHAS photometric catalogue , 2009, 0906.1792.

[21]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[22]  Millimetre continuum emission from symbiotic stars - I. The measurements , 1995 .

[23]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[24]  Results of the ROTOR-program. I. The long-term photometric variability of classical T Tauri stars , 2006, astro-ph/0611028.

[25]  A. Alvarez-Candal,et al.  SEARCHING FOR NEW YELLOW SYMBIOTIC STARS: POSITIVE IDENTIFICATION OF StHα63 , 2016, 1602.02189.

[26]  U. Munari,et al.  SU Lyncis, a hard X-ray bright M giant: clues point to a large hidden population of symbiotic stars , 2016, 1604.08483.

[27]  K. Cunha,et al.  High-resolution spectroscopic observations of the D${'}$-type symbiotic stars HD 330036 and AS 201 , 2005 .

[28]  David Allen,et al.  Symbiotic stars , 1981, Nature.

[29]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[30]  J. P. Phillips 2MASS near‐infrared photometry of symbiotic stars , 2007 .

[31]  P. Podsiadlowski,et al.  The single-degenerate channel for the progenitors of Type Ia supernovae , 2003, astro-ph/0309618.

[32]  D. Padgett,et al.  The Spitzer c2d Survey of Weak-Line T Tauri Stars. II. New Constraints on the Timescale for Planet Building , 2007, 0706.0563.

[33]  J. Mikołajewska,et al.  Distinguishing between symbiotic stars and planetary nebulae , 2017, 1708.05224.

[34]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[35]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[36]  W. Reid A multiwavelength analysis of planetary nebulae in the Large Magellanic Cloud , 2014, 1401.0985.

[37]  R.J.Ivison,et al.  A catalogue of symbiotic stars , 2000, astro-ph/0005547.

[38]  Janet E. Drew,et al.  Initial data release from the INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS) , 2007, 0712.0384.

[39]  R. Corradi,et al.  IPHAS and the symbiotic stars. III. New discoveries and their IR spectral energy distributions , 2014 .

[40]  Zhanwen Han,et al.  Population synthesis for symbiotic stars with white dwarf accretors , 2006, astro-ph/0608449.

[41]  Karel A. van der Hucht,et al.  The VIIth catalogue of galactic Wolf–Rayet stars , 2001 .

[42]  U. Munari,et al.  A catalogue of symbiotic stars , 2000 .

[43]  C. Ducourant,et al.  Evolution of the T Tauri star population in the Lupus association , 2015, 1507.00281.

[44]  André A. Costa,et al.  J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey , 2014, 1403.5237.

[45]  L. F. Miranda,et al.  SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR? , 2013 .

[46]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[47]  W. Herbst,et al.  A Photometric Catalog of Herbig Ae/Be Stars and Discussion of the Nature and Cause of the Variations of UX Orionis Stars , 1999 .

[48]  P. Groot,et al.  Spectroscopic identifications of blue-Hα-excess sources in the Kepler field of view , 2012, 1210.3038.

[49]  W. Herbst,et al.  Results of the ROTOR-program II. The long-term photometric variability of weak-line T Tauri stars ⋆ , 2008, 0801.3543.

[50]  J. Brinkmann,et al.  HIGH-RESOLUTION H-BAND SPECTROSCOPY OF Be STARS WITH SDSS-III/APOGEE. I. NEW Be STARS, LINE IDENTIFICATIONS, AND LINE PROFILES , 2014, 1409.4668.

[51]  D. Bizyaev,et al.  THE FREQUENCY OF RAPID ROTATION AMONG K GIANT STARS , 2011, 1103.1387.

[52]  F. V. Leeuwen,et al.  AGB variables and the Mira period–luminosity relation , 2008, 0801.4465.

[53]  R. Corradi,et al.  IPHAS and the symbiotic stars. I. Selection method and first discoveries , 2007, 0712.2391.

[54]  I. Glass,et al.  Infrared Photometry of Southern Emission-Line Stars , 1974 .

[55]  M. Bode,et al.  Rotational velocities of the giants in symbiotic stars – I. D′‐type symbiotics★ , 2005, astro-ph/0507569.

[56]  M. Bode,et al.  Rotational velocities of the giants in symbiotic stars – III. Evidence of fast rotation in S‐type symbiotics★ , 2008, 0807.3817.

[57]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[58]  Yong-Sun Park,et al.  SiO AND H2O MASER SURVEY TOWARD POST-ASYMPTOTIC GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS , 2014 .

[59]  J. Vélez,et al.  Multi-band polarimetry of post-asymptotic giant branch stars - I. Optical measurements , 2017, 1701.03809.

[60]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[61]  H. Rocha-Pinto,et al.  Homogeneous abundance analysis of FGK dwarf, subgiant, and giant stars with and without giant planets , 2015, 1505.01726.

[62]  U. Munari Symbiotic stars as precursors of the type Ia supernovae , 1992 .

[63]  Ole Streicher,et al.  The Astropy Problem , 2016 .

[64]  J. Sokoloski,et al.  Symbiotic stars in X-rays , 2012, Astronomy & Astrophysics.

[65]  H. J. Farnhill,et al.  The VST Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS , 2014, 1402.7024.

[66]  B. Merín,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. IX. The Serpens YSO Population as Observed with IRAC and MIPS , 2007, 0704.0009.

[67]  N. Caldwell,et al.  A survey of the Local Group of galaxies for symbiotic binary stars – I. First detection of symbiotic stars in M33 , 2016, 1608.04994.

[68]  D. Leisawitz,et al.  THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG , 2011, 1110.6162.

[69]  T. Bedding,et al.  Long-term photometry and periods for 261 nearby pulsating M giants , 2009, 0908.3228.

[70]  A-Li Luo,et al.  LAMOST OBSERVATIONS IN THE KEPLER FIELD: SPECTRAL CLASSIFICATION WITH THE MKCLASS CODE , 2015 .

[71]  W. Corradi,et al.  Investigation of 131 Herbig Ae/Be Candidate Stars , 2003 .

[72]  S. Kenyon The Symbiotic Stars by S. J. Kenyon , 1986 .

[73]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[74]  Bernard M. E. Moret,et al.  Decision Trees and Diagrams , 1982, CSUR.