Observer normal forms for a class of nonlinear systems by means of coupled auxiliary dynamics

[1]  D. Luenberger An introduction to observers , 1971 .

[2]  Denis V. Efimov,et al.  Interval observer for a class of uncertain nonlinear singular systems , 2016, Autom..

[3]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[4]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[5]  Driss Boutat,et al.  A Class of Coupled Extended Dynamics Observability Normal Forms , 2018, 2018 37th Chinese Control Conference (CCC).

[6]  Juhoon Back,et al.  A Complete Solution to a Simple Case of Dynamic Observer Error Linearization: New Approach to Observer Error Linearization , 2011, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[7]  Martin Guay,et al.  Observer linearization by output-dependent time-scale transformations , 2002, IEEE Trans. Autom. Control..

[8]  Juhoon Back,et al.  Dynamic Observer Error Linearization , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[9]  Mondher Farza,et al.  A Simple Observer for a Class of Nonlinear Systems , 1998 .

[10]  Jin H. Seo,et al.  Nonlinear observer design by dynamic observer error linearization , 2004, IEEE Transactions on Automatic Control.

[11]  Samee Ullah Khan,et al.  Analysis of Online Social Network Connections for Identification of Influential Users , 2018, ACM Comput. Surv..

[12]  Driss Boutat,et al.  A nonlinear Luenberger-like observer for nonlinear singular systems , 2017, Autom..

[13]  Y. N. Kyrychko,et al.  Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate , 2005 .

[14]  Driss Boutat,et al.  Extended nonlinear observable canonical form for multi-output dynamical systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[15]  Henk Nijmeijer,et al.  Time scaling for observer design with linearizable error dynamics , 2004, Autom..

[16]  Driss Boutat,et al.  On the transformation of nonlinear dynamical systems into the extended nonlinear observable canonical form , 2011, Int. J. Control.

[17]  Driss Boutat,et al.  GEOMETRICAL CONDITIONS FOR OBSERVER ERROR LINEARIZATION VIA 0 → 1, … → (N – 2) – ∨ , 2007 .

[18]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[19]  Philippe Jouan Immersion of Nonlinear Systems into Linear Systems Modulo Output Injection , 2003, SIAM J. Control. Optim..

[20]  Robert S Parker,et al.  Dynamic modeling of free fatty acid, glucose, and insulin: an extended "minimal model". , 2006, Diabetes technology & therapeutics.

[21]  Alan F. Lynch,et al.  Multiple Time Scalings of a Multi-Output Observer Form , 2010, IEEE Transactions on Automatic Control.

[22]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[23]  Claude H. Moog,et al.  The Observer Error Linearization Problem via Dynamic Compensation , 2014, IEEE Transactions on Automatic Control.

[24]  Alexander G. Loukianov,et al.  A Robust Extended State Observer for the Estimation of Concentration and Kinetics in a CSTR , 2015 .

[25]  Mihalis G. Markakis,et al.  Nonlinear Modeling of the Dynamic Effects of Infused Insulin on Glucose: Comparison of Compartmental With Volterra Models , 2009, IEEE Transactions on Biomedical Engineering.

[26]  Driss Boutat,et al.  Single Output-Dependent Observability Normal Form , 2007, SIAM J. Control. Optim..

[27]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[28]  Driss Boutat,et al.  Extended nonlinear observer normal forms for a class of nonlinear dynamical systems , 2015 .

[29]  Driss Boutat,et al.  Nonlinear Observer Normal Forms for Some Predator-Prey Models , 2013, NOLCOS.

[30]  Seyed M. Moghadas,et al.  Global stability of a two-stage epidemic model with generalized non-linear incidence , 2002, Math. Comput. Simul..