Implementation Security of Quantum Cryptography: Introduction, challenges, solutions

[1]  A. W. Sharpe,et al.  High speed single photon detection in the near-infrared , 2007, 0707.4307.

[2]  Daniel J. Bernstein Is the security of quantum cryptography guaranteed by the laws of physics? , 2018, ArXiv.

[3]  Jian-Wei Pan,et al.  Measurement-device-independent quantum key distribution over 200 km. , 2014, Physical review letters.

[4]  T. Rudolph The Laws of Physics and Cryptographic Security , 2002, quant-ph/0202143.

[5]  L. Liang,et al.  Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems , 2013, 1303.6043.

[6]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[7]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[8]  Seth Lloyd,et al.  Quantum singular-value decomposition of nonsparse low-rank matrices , 2016, 1607.05404.

[9]  Raman Kashyap,et al.  Creation of backdoors in quantum communications via laser damage , 2015, 1510.03148.

[10]  Zeeya Merali,et al.  Hackers blind quantum cryptographers , 2010 .

[11]  Paul C. Kocher,et al.  Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems , 1996, CRYPTO.

[12]  Patrick J. Coles,et al.  Numerical approach for unstructured quantum key distribution , 2015, Nature Communications.

[13]  Li Qian,et al.  Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. , 2013, Physical review letters.

[14]  Dominic Mayers,et al.  Quantum Key Distribution and String Oblivious Transfer in Noisy Channels , 1996, CRYPTO.

[15]  Yang Liu,et al.  Measurement-device-independent quantum key distribution over untrustful metropolitan network , 2015, 1509.08389.

[16]  E. Diamanti,et al.  Preventing Calibration Attacks on the Local Oscillator in Continuous-Variable Quantum Key Distribution , 2013, 1304.7024.

[17]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[18]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[19]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[20]  Zeeya Merali Quantum crack in cryptographic armour , 2010 .

[21]  Xiongfeng Ma,et al.  ar X iv : q ua ntp h / 05 12 08 0 v 2 1 1 A pr 2 00 6 TIMESHIFT ATTACK IN PRACTICAL QUANTUM , 2005 .

[22]  P. J. Clarke,et al.  Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light , 2012, Nature communications.

[23]  M. Hayashi Upper bounds of eavesdropper’s performances in finite-length code with the decoy method , 2007, quant-ph/0702250.

[24]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[25]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[26]  Zhu Cao,et al.  Discrete-phase-randomized coherent state source and its application in quantum key distribution , 2014, 1410.3217.

[27]  J. F. Dynes,et al.  Robust random number generation using steady-state emission of gain-switched laser diodes , 2014, 1407.0933.

[28]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[29]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[30]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[31]  Masato Koashi,et al.  Simple security proof of quantum key distribution based on complementarity , 2009 .

[32]  R. Penty,et al.  Quantum key distribution without detector vulnerabilities using optically seeded lasers , 2015, Nature Photonics.

[33]  Hoi-Kwong Lo,et al.  Loss-tolerant quantum cryptography with imperfect sources , 2013, 1312.3514.

[34]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[35]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[36]  Masahito Hayashi,et al.  Practical evaluation of security for quantum key distribution , 2006 .

[37]  Gerd Leuchs,et al.  Device calibration impacts security of quantum key distribution. , 2011, Physical review letters.

[38]  T. F. D. Silva,et al.  Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits , 2012, 1207.6345.

[39]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[40]  Nicolas Gisin,et al.  Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. , 2004, Physical review letters.

[41]  Patrick J. Coles,et al.  Self-referenced continuous-variable quantum key distribution protocol , 2015, 1503.04763.

[42]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[43]  J. F. Dynes,et al.  Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography , 2011, 1106.2675.

[44]  Vadim Makarov,et al.  Secure gated detection scheme for quantum cryptography , 2011 .

[45]  J. Preskill,et al.  Phase randomization improves the security of quantum key distribution , 2005, quant-ph/0504209.

[46]  Paul D. Townsend,et al.  Eighty kilometre transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55m , 2002 .

[47]  I Lucio-Martinez,et al.  Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. , 2013, Physical review letters.

[48]  Paul C. Kocher,et al.  Differential Power Analysis , 1999, CRYPTO.

[49]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[50]  Norbert Lütkenhaus,et al.  Security proof of quantum key distribution with detection-efficiency mismatch , 2017 .

[51]  Marco Lucamarini,et al.  Decoy-state quantum key distribution with a leaky source , 2016, New Journal of Physics.

[52]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[53]  Douglas Stebila,et al.  Quantum Key Distribution in the Classical Authenticated Key Exchange Framework , 2012, PQCrypto.

[54]  Dag Roar Hjelme,et al.  Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography , 2001 .

[55]  Sébastien Kunz-Jacques,et al.  Robust Shot Noise Measurement for CVQKD , 2014 .

[56]  Alberto Tosi,et al.  Quantifying backflash radiation to prevent zero-error attacks in quantum key distribution , 2017, Light, science & applications.

[57]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[58]  Hui Liu,et al.  Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. , 2016, Physical review letters.

[59]  H. Weinfurter,et al.  The breakdown flash of silicon avalanche photodiodes-back door for eavesdropper attacks? , 2001, quant-ph/0104103.

[60]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[61]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[62]  V. Makarov Controlling passively quenched single photon detectors by bright light , 2007, 0707.3987.

[63]  Akihiro Mizutani,et al.  Finite-key security analysis of quantum key distribution with imperfect light sources , 2015, 1504.08151.

[64]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[65]  John Preskill,et al.  Security of quantum key distribution using weak coherent states with nonrandom phases , 2007, Quantum Inf. Comput..

[66]  N. Namekata,et al.  800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. , 2006, Optics express.

[67]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[68]  J. Skaar,et al.  Effects of detector efficiency mismatch on security of quantum cryptosystems , 2005, quant-ph/0511032.

[69]  J. Skaar,et al.  Hacking commercial quantum cryptography systems by tailored bright illumination , 2010, 1008.4593.

[70]  James F. Dynes,et al.  Practical security bounds against the Trojan-horse attack in quantum key distribution , 2015, 1506.01989.

[71]  Vadim Makarov,et al.  Avoiding the blinding attack in QKD , 2010 .

[72]  Dominique Unruh,et al.  Universally Composable Quantum Multi-party Computation , 2009, EUROCRYPT.

[73]  Jacob Scheuer,et al.  Effective privacy amplification for secure classical communications , 2011, ArXiv.

[74]  M. Koashi Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. , 2004, Physical review letters.

[75]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[76]  M Jofre,et al.  True random numbers from amplified quantum vacuum. , 2011, Optics express.

[77]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[78]  M. Fejer,et al.  Experimental measurement-device-independent quantum key distribution. , 2012, Physical review letters.

[79]  H. Inamori,et al.  Unconditional security of practical quantum key distribution , 2007 .

[80]  Zhu Cao,et al.  Quantum random number generation , 2015, npj Quantum Information.

[81]  A R Dixon,et al.  Efficient decoy-state quantum key distribution with quantified security. , 2013, Optics express.

[82]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[83]  Gerd Leuchs,et al.  Trojan-horse attacks threaten the security of practical quantum cryptography , 2014, 1406.5813.

[84]  Bing Qi,et al.  Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection , 2015, 1503.00662.

[85]  David Brumley,et al.  Remote timing attacks are practical , 2003, Comput. Networks.

[86]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[87]  K. Tamaki,et al.  Differential phase shift-quantum key distribution , 2008, IEEE Communications Magazine.

[88]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[89]  Werner Schindler,et al.  A New Side-Channel Attack on RSA Prime Generation , 2009, CHES.

[90]  Werner Schindler,et al.  A Timing Attack against RSA with the Chinese Remainder Theorem , 2000, CHES.

[91]  Andrew Chi-Chih Yao,et al.  Self testing quantum apparatus , 2004, Quantum Inf. Comput..