Calibration of optically trapped nanotools

Holographically trapped nanotools can be used in a novel form of force microscopy. By measuring the displacement of the tool in the optical traps, the contact force experienced by the probe can be inferred. In the following paper we experimentally demonstrate the calibration of such a device and show that its behaviour is independent of small changes in the relative position of the optical traps. Furthermore, we explore more general aspects of the thermal motion of the tool.

[1]  Simon Hanna,et al.  FDTD simulations of forces on particles during holographic assembly. , 2008, Optics express.

[2]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[3]  M. Miles,et al.  Mapping real-time images of high-speed AFM using multitouch control , 2009, Nanotechnology.

[4]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[5]  Miles J. Padgett,et al.  Lights, action: Optical tweezers , 2002 .

[6]  Wolfgang Singer,et al.  Three-dimensional force calibration of optical tweezers , 2000 .

[7]  Miles Padgett,et al.  Microrheology with optical tweezers. , 2009, Lab on a chip.

[8]  Olaf Schubert,et al.  Quantitative optical trapping of single gold nanorods. , 2008, Nano letters.

[9]  M J Padgett,et al.  Hands-on with optical tweezers: a multitouch interface for holographic optical trapping. , 2009, Optics express.

[10]  E. Sevick,et al.  An optical trap experiment to demonstrate fluctuation theorems in viscoelastic media , 2007 .

[11]  Graham M. Gibson,et al.  Assembly and force measurement with SPM-like probes in holographic optical tweezers , 2009 .

[12]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[13]  Jonathan Leach,et al.  Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. , 2008, Optics express.

[14]  P. G. Gucciardi,et al.  Femtonewton force sensing with optically trapped nanotubes. , 2008, Nano letters.

[15]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[16]  Hideki Masuda,et al.  Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution , 1998 .

[17]  A. Martin-Löf,et al.  Fluctuating hydrodynamics and Brownian motion , 1973 .

[18]  B. Carrasco,et al.  Improved hydrodynamic interaction in macromolecular bead models , 1999 .

[19]  E. Stelzer,et al.  Photonic force microscope calibration by thermal noise analysis , 1998 .

[20]  Caner Durucan,et al.  Preparation and microstructure of sol-gel derived silver-doped silica , 2007 .

[21]  E. Sevick,et al.  Fluctuations and irreversibility: an experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap. , 2004, Physical review letters.

[22]  Simon Hanna,et al.  Thermal motion of a holographically trapped SPM-like probe , 2009, Nanotechnology.

[23]  Johannes Courtial,et al.  Holographic assembly workstation for optical manipulation , 2008 .

[24]  Sabato Fusco,et al.  Viscosity measurements on micron-size scale using optical tweezers , 2005 .

[25]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.