Bullied no more: when and how DNA shoves proteins around

Abstract The predominant protein-centric perspective in protein–DNA-binding studies assumes that the protein drives the interaction. Research focuses on protein structural motifs, electrostatic surfaces and contact potentials, while DNA is often ignored as a passive polymer to be manipulated. Recent studies of DNA topology, the supercoiling, knotting, and linking of the helices, have shown that DNA has the capability to be an active participant in its transactions. DNA topology-induced structural and geometric changes can drive, or at least strongly influence, the interactions between protein and DNA. Deformations of the B-form structure arise from both the considerable elastic energy arising from supercoiling and from the electrostatic energy. Here, we discuss how these energies are harnessed for topology-driven, sequence-specific deformations that can allow DNA to direct its own metabolism.

[1]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[2]  Richard Lavery,et al.  Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. , 2003, Nucleic acids research.

[3]  D. Salahub,et al.  Metal-ligand interactions : molecular, nano-, micro-, and macro-systems in complex environments , 2003 .

[4]  Alexander Vologodskii,et al.  Brownian dynamics simulation of knot diffusion along a stretched DNA molecule. , 2006, Biophysical journal.

[5]  Alexander Vologodskii,et al.  Kinking the double helix by bending deformation , 2007, Nucleic acids research.

[6]  Marcel Geertz,et al.  General organisational principles of the transcriptional regulation system: a tree or a circle? , 2010, Molecular bioSystems.

[7]  E. L. Zechiedrich,et al.  Topoisomerase IV, alone, unknots DNA in E. coli. , 2001, Genes & development.

[8]  R. Sinden,et al.  Measurement of unrestrained negative supercoiling and topological domain size in living human cells. , 1997, Biochemistry.

[9]  Martin Zacharias,et al.  Local and global effects of strong DNA bending induced during molecular dynamics simulations , 2009, Nucleic acids research.

[10]  S. Halford,et al.  Enzyme-mediated DNA looping. , 2004, Annual review of biophysics and biomolecular structure.

[11]  M Frank-Kamenetskii,et al.  Conformational and thermodynamic properties of supercoiled DNA. , 1992, Journal of molecular biology.

[12]  David Keller,et al.  Single-molecule studies of the effect of template tension on T7 DNA polymerase activity , 2000, Nature.

[13]  V. Bloomfield,et al.  DNA condensation. , 1996, Current opinion in structural biology.

[14]  A. J. Martin-Galiano,et al.  The genome of Streptococcus pneumoniae is organized in topology-reacting gene clusters , 2010, Nucleic acids research.

[15]  Eric J. Rawdon,et al.  Bending modes of DNA directly addressed by cryo-electron microscopy of DNA minicircles , 2009, Nucleic acids research.

[16]  S. Arnott,et al.  Structures for the polynucleotide complexes poly(dA) with poly (dT) and poly(dT) with poly(dA) with poly (dT). , 1974, Journal of molecular biology.

[17]  K Rippe,et al.  Looping dynamics of linear DNA molecules and the effect of DNA curvature: a study by Brownian dynamics simulation. , 1998, Biophysical journal.

[18]  M. Bolon The newer fluoroquinolones. , 2011, The Medical clinics of North America.

[19]  Janet M Thornton,et al.  Identifying DNA-binding proteins using structural motifs and the electrostatic potential. , 2004, Nucleic acids research.

[20]  M. Tan,et al.  DNA Supercoiling-Dependent Gene Regulation in Chlamydia , 2008, Journal of bacteriology.

[21]  M. Karplus,et al.  Advances in chemical physics, volume 71: Proteins: A theoretical perspective of dynamics, structure, and thermodynamics , 2006 .

[22]  K. Hande,et al.  Topoisomerase II inhibitors. , 2006, Cancer chemotherapy and biological response modifiers.

[23]  Hue Sun Chan,et al.  Local site preference rationalizes disentangling by DNA topoisomerases. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[25]  Andrew Travers,et al.  DNA supercoiling — a global transcriptional regulator for enterobacterial growth? , 2005, Nature Reviews Microbiology.

[26]  B. Pettitt,et al.  Microscopic DNA fluctuations are in accord with macroscopic DNA stretching elasticity without strong dependence on force field choice , 2003 .

[27]  B. Peter,et al.  The Structure of Supercoiled Intermediates in DNA Replication , 1998, Cell.

[28]  David Levens,et al.  Supercoil-driven DNA structures regulate genetic transactions. , 2007, Frontiers in bioscience : a journal and virtual library.

[29]  J. Tomizawa,et al.  Formation of catenated molecules by replication of colicin E1 plasmid DNA in cell extracts. , 1976, Journal of molecular biology.

[30]  J. Berger,et al.  Structural basis for gate-DNA recognition and bending by type IIA topoisomerases , 2007, Nature.

[31]  R. Jaenisch,et al.  DNA replication of SV40-infected cells. VII. Formation of SV40 catenated and circular dimers. , 1973, Journal of molecular biology.

[32]  D. Lockshon,et al.  Positively supercoiled plasmid DNA is produced by treatment of Escherichia coli with DNA gyrase inhibitors. , 1983, Nucleic acids research.

[33]  C. Dorman Regulation of Transcription in Bacteria by DNA Supercoiling , 2008 .

[34]  D. Lilley,et al.  Local DNA topology and gene expression: the case of the leu-500 promoter. , 1991, Molecular microbiology.

[35]  Steven Hahn,et al.  Crystal structure of a yeast TBP/TATA-box complex , 1993, Nature.

[36]  R. Strick,et al.  Cation–chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes , 2001, The Journal of cell biology.

[37]  Jonathan Widom,et al.  Spontaneous sharp bending of double-stranded DNA. , 2004, Molecular cell.

[38]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[39]  C. Laughton,et al.  Supercoiling and denaturation of DNA loops. , 2008, Physical review letters.

[40]  N R Cozzarelli,et al.  Structure of plectonemically supercoiled DNA. , 1990, Journal of molecular biology.

[41]  David Swigon,et al.  Modeling the Lac repressor-operator assembly: the influence of DNA looping on Lac repressor conformation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  W. Kuhn,et al.  Über die Gestalt fadenförmiger Moleküle in Lösungen , 1934 .

[43]  C. D. Hardy,et al.  Topological domain structure of the Escherichia coli chromosome. , 2004, Genes & development.

[44]  B. Pettitt,et al.  Solvation and hydration of proteins and nucleic acids: a theoretical view of simulation and experiment. , 2002, Accounts of chemical research.

[45]  R. Wells,et al.  Intramolecular DNA triplexes in supercoiled plasmids. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[46]  F. Guo,et al.  Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse , 1997, Nature.

[47]  A. Robicsek,et al.  The worldwide emergence of plasmid-mediated quinolone resistance. , 2006, The Lancet. Infectious diseases.

[48]  W. Bauer,et al.  Supercoiling in closed circular DNA: dependence upon ion type and concentration. , 1978, Biochemistry.

[49]  S. P. Mielke,et al.  DNA mechanics. , 2005, Annual review of biomedical engineering.

[50]  Richard H. Lathrop,et al.  DNA sequence and structure: direct and indirect recognition in protein-DNA binding , 2002, ISMB.

[51]  M. Dinger,et al.  Archaeal genome organization and stress responses: implications for the origin and evolution of cellular life. , 2002, Astrobiology.

[52]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[53]  Daniel Svozil,et al.  Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids. , 2008, The journal of physical chemistry. B.

[54]  Ponraj Prabakaran,et al.  Classification of protein-DNA complexes based on structural descriptors. , 2006, Structure.

[55]  S. Brahmachari,et al.  Supercoil-induced unusual DNA structures as transcriptional block. , 1990, Nucleic acids research.

[56]  Anthony Maxwell,et al.  Energy coupling in type II topoisomerases: why do they hydrolyze ATP? , 2007, Biochemistry.

[57]  Charles J. Dorman,et al.  Bacterial DNA topology and infectious disease , 2008, Nucleic acids research.

[58]  H. Nelson,et al.  Structure and function of DNA-binding proteins. , 1995, Current opinion in genetics & development.

[59]  E. L. Zechiedrich,et al.  DNA disentangling by type-2 topoisomerases. , 2004, Journal of molecular biology.

[60]  E. L. Zechiedrich,et al.  Electrostatics of DNA–DNA juxtapositions: consequences for type II topoisomerase function , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[61]  J. Chaires,et al.  A thermodynamic signature for drug-DNA binding mode. , 2006, Archives of biochemistry and biophysics.

[62]  A. Travers,et al.  The expression of the Escherichia coli fis gene is strongly dependent on the superhelical density of DNA , 2000, Molecular microbiology.

[63]  Michelle C. Swick,et al.  Differences Between Positively and Negatively Supercoiled DNA that Topoisomerases May Distinguish , 2009 .

[64]  Jacques H. van Boom,et al.  Molecular structure of a left-handed double helical DNA fragment at atomic resolution , 1979, Nature.

[65]  W. Lipscomb,et al.  The crystal structure of Haelll methyltransferase covalently complexed to DNA: An extrahelical cytosine and rearranged base pairing , 1995, Cell.

[66]  R. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. XII. DNA Topology as a Key Target of Selection , 2005, Genetics.

[67]  Sarah A. Harris,et al.  Atomistic simulations reveal bubbles, kinks and wrinkles in supercoiled DNA , 2011, Nucleic acids research.

[68]  J. Berger,et al.  Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI , 2007, Nature Structural &Molecular Biology.

[69]  G. Lamm,et al.  Divalent cations and the electrostatic potential around DNA: Monte Carlo and Poisson-Boltzmann calculations. , 1999, Biopolymers.

[70]  P. Cook,et al.  Supercoiling of DNA and nuclear conformation during the cell-cycle. , 1978, Journal of cell science.

[71]  J. Champoux,et al.  Preferential binding of human topoisomerase I to superhelical DNA. , 1995, The EMBO journal.

[72]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions. , 1981, Biochemistry.

[73]  Paul Carlson,et al.  DNA twisting and the effects of non-contacted bases on affinity of 434 operator for 434 represser , 1992, Nature.

[74]  Aneel K. Aggarwal,et al.  Structure of a DNA-bound Ultrabithorax–Extradenticle homeodomain complex , 1999, Nature.

[75]  A. Ansari,et al.  Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR , 1992, Nature.

[76]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[77]  J. Vinograd,et al.  Catenated Circular DNA Molecules in HeLa Cell Mitochondria , 1967, Nature.

[78]  H. Hansma,et al.  Exploring writhe in supercoiled minicircle DNA , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[79]  N. Cozzarelli,et al.  Analysis of the mechanism of DNA recombination using tangles , 1995, Quarterly Reviews of Biophysics.

[80]  A. Travers,et al.  A common topology for bacterial and eukaryotic transcription initiation? , 2007, EMBO reports.

[81]  W. Olson,et al.  DNA sequence-directed organization of chromatin: structure-based computational analysis of nucleosome-binding sequences. , 2009, Biophysical journal.

[82]  Richard Lavery,et al.  Kinking occurs during molecular dynamics simulations of small DNA minicircles. , 2006, Structure.

[83]  I. Tinoco,et al.  RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP , 2006, Nature.

[84]  James H. White Self-Linking and the Gauss Integral in Higher Dimensions , 1969 .

[85]  D. Lilley,et al.  Structural alteration in alternating adenine-thymine sequences in positively supercoiled DNA. , 1991, Journal of molecular biology.

[86]  L. A. Jacobson,et al.  Structural and thermodynamic strategies for site-specific DNA binding proteins. , 2000, Structure.

[87]  A. Bacolla,et al.  Non-B DNA structure-induced genetic instability and evolution , 2009, Cellular and Molecular Life Sciences.

[88]  G. Wuite,et al.  How DNA coiling enhances target localization by proteins , 2008, Proceedings of the National Academy of Sciences.

[89]  Shandar Ahmad,et al.  ReadOut: structure-based calculation of direct and indirect readout energies and specificities for protein–DNA recognition , 2006, Nucleic Acids Res..

[90]  P. Forterre,et al.  Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms , 2009, Nucleic acids research.

[91]  Vikram Vijayan,et al.  Oscillations in supercoiling drive circadian gene expression in cyanobacteria , 2009, Proceedings of the National Academy of Sciences.

[92]  H. Chan,et al.  Topological information embodied in local juxtaposition geometry provides a statistical mechanical basis for unknotting by type-2 DNA topoisomerases. , 2006, Journal of molecular biology.

[93]  G. Călugăreanu Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants , 1961 .

[94]  Stephen C. J. Parker,et al.  Local DNA Topography Correlates with Functional Noncoding Regions of the Human Genome , 2009, Science.

[95]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[96]  J. Léger,et al.  Structural Transitions of a Twisted and Stretched DNA Molecule , 1999 .

[97]  T. Jovin,et al.  Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. , 2001, Journal of molecular biology.

[98]  F. Javier Luque,et al.  Towards a molecular dynamics consensus view of B-DNA flexibility , 2008, Nucleic acids research.

[99]  L. Maher Mechanisms of DNA bending. , 1998, Current opinion in chemical biology.

[100]  P. Forterre,et al.  Comparison of plasmid DNA topology among mesophilic and thermophilic eubacteria and archaebacteria , 1994, Journal of bacteriology.

[101]  Bryan C. Daniels,et al.  Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. , 2008, Physical review letters.

[102]  Francesco S. Pavone,et al.  Tetramer opening in LacI-mediated DNA looping , 2009, Proceedings of the National Academy of Sciences.

[103]  R. Mann,et al.  The role of DNA shape in protein-DNA recognition , 2009, Nature.

[104]  A. Kornyshev,et al.  Helical coherence of DNA in crystals and solution , 2008, Nucleic acids research.

[105]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor--operator interaction: equilibrium measurements. , 1981, Biochemistry.

[106]  R. Scharein,et al.  3D visualization software to analyze topological outcomes of topoisomerase reactions , 2008, Nucleic acids research.

[107]  J. Widom,et al.  DNA twisting flexibility and the formation of sharply looped protein-DNA complexes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[108]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[109]  J. Léger,et al.  Structural transitions in DNA driven by external force and torque. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[110]  S. Harrison,et al.  Effect of non-contacted bases on the affinity of 434 operator for 434 repressor and Cro , 1987, Nature.

[111]  B. Pettitt,et al.  A molecular simulation picture of DNA hydration around A- and B-DNA. , 1998, Biopolymers.

[112]  Peter F. Hallin,et al.  Parallel genetic and phenotypic evolution of DNA superhelicity in experimental populations of Escherichia coli. , 2010, Molecular biology and evolution.

[113]  W. El-Sharoud Bacterial Physiology: A Molecular Approach , 2011 .

[114]  Thierry Viard,et al.  Giant proteins that move DNA: bullies of the genomic playground , 2006, Nature Reviews Molecular Cell Biology.

[115]  H. Dyson,et al.  Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. , 1999, Journal of molecular biology.

[116]  David Levens,et al.  The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c‐myc expression , 2006, The EMBO journal.

[117]  P. Forterre,et al.  Origin and evolution of DNA topoisomerases. , 2007, Biochimie.

[118]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[119]  R. Mann,et al.  Origins of specificity in protein-DNA recognition. , 2010, Annual review of biochemistry.

[120]  Guliang Wang,et al.  Non-B DNA structure-induced genetic instability. , 2006, Mutation research.

[121]  Jeffrey E. Barrick,et al.  Second-Order Selection for Evolvability in a Large Escherichia coli Population , 2011, Science.

[122]  Tamar Schlick,et al.  Trefoil Knotting Revealed by Molecular Dynamics Simulations of Supercoiled DNA , 1992, Science.

[123]  N. Cozzarelli,et al.  4 Primer on the Topology and Geometry of DNA Supercoiling , 1990 .

[124]  A. Podtelezhnikov,et al.  Multimerization-cyclization of DNA fragments as a method of conformational analysis. , 2000, Biophysical journal.

[125]  V. Bloomfield DNA condensation by multivalent cations. , 1997, Biopolymers.

[126]  A. Khodursky,et al.  Roles of Topoisomerases in Maintaining Steady-state DNA Supercoiling in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[127]  N R Cozzarelli,et al.  The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. , 1997, Nucleic acids research.

[128]  Terence R. Strick,et al.  Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching , 2006, Science.

[129]  N. Cozzarelli,et al.  Escherichia coli Mutants Thermosensitive for Deoxyribonucleic Acid Gyrase Subunit A: Effects on Deoxyribonucleic Acid Replication, Transcription, and Bacteriophage Growth , 1979, Journal of bacteriology.

[130]  K. Smith,et al.  A catenated intermediate in plasmid replication. , 1973, Biochemical and biophysical research communications.

[131]  M Ptashne,et al.  Recognition of a DNA operator by the repressor of phage 434: a view at high resolution , 1988, Science.

[132]  H. Bremer,et al.  Winding of the DNA helix by divalent metal ions. , 1997, Nucleic acids research.

[133]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[134]  N. Osheroff,et al.  Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. , 1990, The EMBO journal.

[135]  A. Kornyshev,et al.  The homology recognition well as an innate property of DNA structure , 2009, Proceedings of the National Academy of Sciences.

[136]  K. Neuman,et al.  Mechanisms of chiral discrimination by topoisomerase IV , 2009, Proceedings of the National Academy of Sciences.

[137]  Rob Phillips,et al.  Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. , 2006, Biopolymers.

[138]  S. Gite,et al.  Single-strand-specific nucleases. , 1995, Critical reviews in microbiology.

[139]  K. Drlica,et al.  Fluoroquinolones: action and resistance. , 2003, Current topics in medicinal chemistry.

[140]  Gerald S. Manning,et al.  Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties , 1969 .

[141]  S. Diggle,et al.  Quinolones: from Antibiotics to Autoinducers , 2022 .

[142]  P. Modrich Studies on sequence recognition by type II restriction and modification enzymes. , 1982, CRC critical reviews in biochemistry.

[143]  T. Strick,et al.  Behavior of supercoiled DNA. , 1998, Biophysical journal.

[144]  Ralf Metzler,et al.  Target search of N sliding proteins on a DNA. , 2005, Biophysical journal.

[145]  Samuel Selvaraj,et al.  Intermolecular and intramolecular readout mechanisms in protein-DNA recognition. , 2004, Journal of molecular biology.

[146]  H. Dyson,et al.  The LEF-1 high-mobility group domain undergoes a disorder-to-order transition upon formation of a complex with cognate DNA. , 2004, Biochemistry.

[147]  Jörg Langowski,et al.  DNA basepair step deformability inferred from molecular dynamics simulations. , 2003, Biophysical journal.

[148]  J. Berger,et al.  The structural basis for substrate specificity in DNA topoisomerase IV. , 2005, Journal of molecular biology.

[149]  Kai J. Kohlhoff,et al.  B-DNA under stress: over- and untwisting of DNA during molecular dynamics simulations. , 2006, Biophysical journal.

[150]  J. Kahn,et al.  Gene repression by minimal lac loops in vivo , 2010, Nucleic acids research.

[151]  H. Kono,et al.  Structure‐based prediction of DNA target sites by regulatory proteins , 1999, Proteins.

[152]  A. Rich,et al.  Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[153]  Paolo Cignoni,et al.  Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[154]  Stephen Neidle,et al.  Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? , 2011, Nature Reviews Drug Discovery.

[155]  A. Flammini,et al.  Local selection rules that can determine specific pathways of DNA unknotting by type II DNA topoisomerases , 2007, Nucleic acids research.

[156]  A. Wolffe,et al.  The structure of DNA in a nucleosome. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[157]  G. Churchward,et al.  Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. , 1994, The EMBO journal.

[158]  S. Quake,et al.  A Systems Approach to Measuring the Binding Energy Landscapes of Transcription Factors , 2007, Science.

[159]  A New Configuration of Deoxyribonucleic Acid , 1958, Nature.

[160]  J. Marko Micromechanics of Single Supercoiled DNA Molecules , 2009 .

[161]  P. P. Lau,et al.  Extracellular nucleases of Alteromonas espejiana BAL 31.IV. The single strand-specific deoxyriboendonuclease activity as a probe for regions of altered secondary structure in negatively and positively supercoiled closed circular DNA , 1979, Nucleic Acids Res..

[162]  David Levens,et al.  The dynamic response of upstream DNA to transcription-generated torsional stress , 2004, Nature Structural &Molecular Biology.

[163]  R. Legerski,et al.  A sensitive endonuclease probe for lesions in deoxyribonucleic acid helix structure produced by carcinogenic or mutagenic agents. , 1977, The Journal of biological chemistry.

[164]  Jie Yan,et al.  Statistics of loop formation along double helix DNAs. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[165]  S. Adhya,et al.  Effect of varying the supercoiling of DNA on transcription and its regulation. , 2003, Biochemistry.

[166]  Shane C. Dillon,et al.  Bacterial nucleoid-associated proteins, nucleoid structure and gene expression , 2010, Nature Reviews Microbiology.

[167]  Nicholas R. Cozzarelli,et al.  DNA topology and its biological effects , 1990 .

[168]  C. D. Hardy,et al.  Topological challenges to DNA replication: Conformations at the fork , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[169]  J. Portugal,et al.  T7 RNA polymerase cannot transcribe through a highly knotted DNA template. , 1996, Nucleic acids research.

[170]  Yongli Zhang,et al.  Statistical-mechanical theory of DNA looping. , 2006, Biophysical journal.

[171]  David L. Steffen,et al.  Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of culture site, age, sex, and location , 2008, BMC infectious diseases.

[172]  V. Zhurkin,et al.  DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[173]  J. Dubochet,et al.  The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. , 1994, Journal of molecular biology.

[174]  D. Sumners,et al.  Hin-mediated DNA knotting and recombining promote replicon dysfunction and mutation , 2007, BMC Molecular Biology.

[175]  L. Rothman-Denes,et al.  Sequence-dependent extrusion of a small DNA hairpin at the N4 virion RNA polymerase promoters. , 1998, Journal of molecular biology.

[176]  D. Crothers,et al.  Statistical mechanics of sequence-dependent circular DNA and its application for DNA cyclization. , 2003, Biophysical journal.

[177]  P. Hanawalt,et al.  A Triplex-forming Sequence from the Human c-MYC Promoter Interferes with DNA Transcription* , 2007, Journal of Biological Chemistry.

[178]  A. Rich,et al.  Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases , 2005, Nature.

[179]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. , 1981, Biochemistry.

[180]  N. Cozzarelli,et al.  Simplification of DNA topology below equilibrium values by type II topoisomerases. , 1997, Science.

[181]  David Swigon,et al.  Sequence-Dependent Effects in the Cyclization of Short DNA. , 2006, Journal of chemical theory and computation.

[182]  C. Dorman,et al.  Regulation of gene expression by histone-like proteins in bacteria. , 2003, Current opinion in genetics & development.

[183]  P. Champ,et al.  Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. , 2004, Nucleic acids research.

[184]  N. Cozzarelli,et al.  Mechanism of topology simplification by type II DNA topoisomerases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[185]  Marcel Geertz,et al.  Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome , 2006, EMBO reports.

[186]  F. Crick,et al.  Kinky helix , 1975, Nature.

[187]  Stephen R Quake,et al.  Behavior of complex knots in single DNA molecules. , 2003, Physical review letters.

[188]  N. Osheroff,et al.  Topoisomerase IB-DNA interactions: X marks the spot. , 2010, Structure.

[189]  A. Rich,et al.  Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. , 1999, Science.

[190]  Todd D. Lillian,et al.  Cooperative kinking at distant sites in mechanically stressed DNA , 2011, Nucleic acids research.

[191]  D. W. Knowles,et al.  Transcription Factors Bind Thousands of Active and Inactive Regions in the Drosophila Blastoderm , 2008, PLoS biology.

[192]  Alexander Rich,et al.  Z-DNA: the long road to biological function , 2003, Nature Reviews Genetics.

[193]  N. Seeman,et al.  Double-stranded DNA homology produces a physical signature , 2010, Proceedings of the National Academy of Sciences.

[194]  Jie Yan,et al.  Localized single-stranded bubble mechanism for cyclization of short double helix DNA. , 2004, Physical review letters.

[195]  Wei Yang Topoisomerases and site-specific recombinases: similarities in structure and mechanism , 2010, Critical reviews in biochemistry and molecular biology.

[196]  H. Chan,et al.  The why and how of DNA unlinking , 2009, Nucleic acids research.

[197]  S. Bae,et al.  Structural and dynamic basis of a supercoiling-responsive DNA element , 2006, Nucleic acids research.

[198]  Jeff Wereszczynski,et al.  On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension , 2006, Proceedings of the National Academy of Sciences.

[199]  J. Wang,et al.  On the degree of unwinding of the DNA helix by ethidium. II. Studies by electron microscopy. , 1975, Biochimica et biophysica acta.

[200]  R. Sinden Molecular biology: DNA twists and flips , 2005, Nature.

[201]  Michelle D. Wang,et al.  Single-Molecule Studies Reveal Dynamics of DNA Unwinding by the Ring-Shaped T7 Helicase , 2007, Cell.

[202]  A. Stasiak,et al.  Physical and Numerical Models in Knot Theory: Including Applications to the Life Sciences , 2005 .

[203]  R. Fuchs In vitro recognition of carcinogen-induced local denaturation sites in native DNA by S1 endonuclease from Aspergillus oryzae , 1975, Nature.

[204]  D. Helinski,et al.  A catenated DNA molecule as an intermediate in the replication of the resistance transfer factor R6K in Escherichia coli. , 1973, Biochemical and biophysical research communications.

[205]  T Schlick,et al.  Internal motion of supercoiled DNA: brownian dynamics simulations of site juxtaposition. , 1998, Journal of molecular biology.

[206]  Geoff S Baldwin,et al.  DNA double helices recognize mutual sequence homology in a protein free environment. , 2008, The journal of physical chemistry. B.

[207]  H. Chan,et al.  Inferring global topology from local juxtaposition geometry: interlinking polymer rings and ramifications for topoisomerase action. , 2006, Biophysical journal.

[208]  N R Cozzarelli,et al.  Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[209]  J. Marko,et al.  How do site-specific DNA-binding proteins find their targets? , 2004, Nucleic acids research.

[210]  Andrew V. Colasanti,et al.  A novel roll-and-slide mechanism of DNA folding in chromatin: implications for nucleosome positioning. , 2007, Journal of molecular biology.

[211]  J. Berger,et al.  How do type II topoisomerases use ATP hydrolysis to simplify DNA topology beyond equilibrium? Investigating the relaxation reaction of nonsupercoiling type II topoisomerases. , 2009, Journal of molecular biology.

[212]  C. Laughton,et al.  Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations , 2007, Nucleic acids research.

[213]  T. Richmond,et al.  The structure of DNA in the nucleosome core , 2003, Nature.

[214]  Tatyana G. Karabencheva-Christova,et al.  Dynamics of proteins and nucleic acids , 2013 .

[215]  N R Cozzarelli,et al.  Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. , 1996, Biophysical journal.

[216]  Javier Arsuaga,et al.  Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli , 2004, Genome Biology.

[217]  R. Roberts,et al.  Hhal methyltransferase flips its target base out of the DNA helix , 1994, Cell.

[218]  J. Shimada,et al.  Statistical mechanics of DNA topoisomers. The helical worm-like chain. , 1985, Journal of molecular biology.

[219]  J. Marko Torque and dynamics of linking number relaxation in stretched supercoiled DNA. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[220]  Stephen K. Burley,et al.  Co-crystal structure of TBP recognizing the minor groove of a TATA element , 1993, Nature.

[221]  L Pauling,et al.  A Proposed Structure For The Nucleic Acids. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[222]  Alfonso Mondragón,et al.  Crystal structure of a bacterial topoisomerase IB in complex with DNA reveals a secondary DNA binding site. , 2010, Structure.

[223]  B. Pettitt,et al.  In the absence of writhe, DNA relieves torsional stress with localized, sequence-dependent structural failure to preserve B-form , 2009, Nucleic acids research.

[224]  Rob Phillips,et al.  Exact theory of kinkable elastic polymers. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[225]  Andrew Travers,et al.  The folding and unfolding of eukaryotic chromatin. , 2009, Current opinion in genetics & development.

[226]  Duilio Cascio,et al.  The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. , 2010, Genes & development.

[227]  S. Halford,et al.  Protein motion from non‐specific to specific DNA by three‐dimensional routes aided by supercoiling , 2003, The EMBO journal.

[228]  Nahum Shiffeldrim,et al.  Cyclization of short DNA fragments and bending fluctuations of the double helix. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[229]  H. Chan,et al.  Action at hooked or twisted-hooked DNA juxtapositions rationalizes unlinking preference of type-2 topoisomerases. , 2010, Journal of molecular biology.

[230]  Peter B. Dervan,et al.  Allosteric modulation of DNA by small molecules , 2009, Proceedings of the National Academy of Sciences.

[231]  J. SantaLucia,et al.  Improved nearest-neighbor parameters for predicting DNA duplex stability. , 1996, Biochemistry.

[232]  Ashley H. Hardin,et al.  Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification , 2011, Nucleic acids research.

[233]  F. B. Fuller Decomposition of the linking number of a closed ribbon: A problem from molecular biology. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[234]  R Lavery,et al.  Stretched and overwound DNA forms a Pauling-like structure with exposed bases. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[235]  J. Berger,et al.  The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks , 2011, Nucleic acids research.

[236]  R J Roberts,et al.  On base flipping , 1995, Cell.

[237]  D. Martincic,et al.  Topoisomerase II inhibitors. , 2005, Cancer chemotherapy and biological response modifiers.

[238]  A. Falaschi Similia similibus: Pairing of homologous chromosomes driven by the physicochemical properties of DNA , 2008, HFSP journal.

[239]  A. Maxwell,et al.  High-throughput assays for DNA gyrase and other topoisomerases , 2006, Nucleic acids research.

[240]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[241]  J. Berger,et al.  DNA topoisomerases: harnessing and constraining energy to govern chromosome topology , 2008, Quarterly Reviews of Biophysics.

[242]  G. S. Manning Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions II. Self‐Diffusion of the Small Ions , 1969 .

[243]  P. Forterre,et al.  DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[244]  J. Schvartzman,et al.  A topological view of the replicon , 2004, EMBO reports.

[245]  D. Crothers,et al.  DNA bending, flexibility, and helical repeat by cyclization kinetics. , 1992, Methods in enzymology.

[246]  T. Strick,et al.  Stress-induced structural transitions in DNA and proteins. , 2000, Annual review of biophysics and biomolecular structure.

[247]  D. Levens,et al.  The functional response of upstream DNA to dynamic supercoiling in vivo , 2008, Nature Structural &Molecular Biology.

[248]  G. Koudelka Recognition of DNA structure by 434 repressor. , 1998, Nucleic acids research.