Hierarchical Bayesian Analysis of Changepoint Problems

SUMMARY A general approach to hierarchical Bayes changepoint models is presented. In particular, desired marginal posterior densities are obtained utilizing the Gibbs sampler, an iterative Monte Carlo method. This approach avoids sophisticated analytic and numerical high dimensional integration procedures. We include an application to changing regressions, changing Poisson processes and changing Markov chains. Within these contexts we handle several previously inaccessible problems.

[1]  E. S. Pearson,et al.  THE TIME INTERVALS BETWEEN INDUSTRIAL ACCIDENTS , 1952 .

[2]  A. Shiryaev On Optimum Methods in Quickest Detection Problems , 1963 .

[3]  H. Chernoff,et al.  ESTIMATING THE CURRENT MEAN OF A NORMAL DISTRIBUTION WHICH IS SUBJECTED TO CHANGES IN TIME , 1964 .

[4]  P. Odell,et al.  A Numerical Procedure to Generate a Sample Covariance Matrix , 1966 .

[5]  David V. Hinkley,et al.  Inference about the change-point in a sequence of binomial variables , 1970 .

[6]  David W. Bacon,et al.  Estimating the transition between two intersecting straight lines , 1971 .

[7]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[8]  A. F. Smith A Bayesian approach to inference about a change-point in a sequence of random variables , 1975 .

[9]  Bayesian inferences related to shifting sequences and two-phase regression , 1977 .

[10]  R. Jarrett A note on the intervals between coal-mining disasters , 1979 .

[11]  L. Broemeling,et al.  Some Bayesian Inferences for a Changing Linear Model , 1980 .

[12]  A. F. Smith,et al.  Straight Lines with a Change‐Point: A Bayesian Analysis of Some Renal Transplant Data , 1980 .

[13]  U. Menzefricke A Bayesian Analysis of a Change in the Precision of a Sequence of Independent Normal Random Variables at an Unknown Time Point , 1981 .

[14]  Bayesian detection of a change of scale parameter in sequences of independent gamma random variables , 1982 .

[15]  N. B. Booth,et al.  A Bayesian approach to retrospective identification of change-points , 1982 .

[16]  D. A. Hsu,et al.  A Bayesian Robust Detection of Shift in the Risk Structure of Stock Market Returns , 1982 .

[17]  Jim Albert,et al.  Mixtures of Dirichlet Distributions and Estimation in Contingency Tables , 1982 .

[18]  C. Morris Natural Exponential Families with Quadratic Variance Functions: Statistical Theory , 1983 .

[19]  S. Zacks SURVEY OF CLASSICAL AND BAYESIAN APPROACHES TO THE CHANGE-POINT PROBLEM: FIXED SAMPLE AND SEQUENTIAL PROCEDURES OF TESTING AND ESTIMATION11Research supported in part by ONR Contracts N00014-75-0725 at The George Washington University and N00014-81-K-0407 at SUNY-Binghamton. , 1983 .

[20]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Douglas A. Wolfe,et al.  Nonparametric statistical procedures for the changepoint problem , 1984 .

[22]  David H. Moen,et al.  Structural changes in multivariate regression models , 1985 .

[23]  D. Siegmund Boundary Crossing Probabilities and Statistical Applications , 1986 .

[24]  A. Raftery,et al.  Bayesian analysis of a Poisson process with a change-point , 1986 .

[25]  K. Worsley Confidence regions and tests for a change-point in a sequence of exponential family random variables , 1986 .

[26]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[27]  Michael A. West,et al.  Monitoring and Adaptation in Bayesian Forecasting Models , 1986 .

[28]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[29]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[30]  David Siegmund,et al.  Confidence Sets in Change-point Problems , 1988 .

[31]  T. Kirkwood,et al.  Statistical Analysis of Deoxyribonucleic Acid Sequence Data-a Review , 1989 .

[32]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[33]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[34]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .