Proteomic analysis of mouse brain cortex identifies metabolic down‐regulation as a general feature of ischemic pre‐conditioning

J. Neurochem. (2012) 122, 1219–1229.

[1]  G. Bazzoni,et al.  Glial Cells Drive Preconditioning-Induced Blood-Brain Barrier Protection , 2011, Stroke.

[2]  H. Inui,et al.  Hypoxia enhances transcriptional activity of androgen receptor through hypoxia-inducible factor-1α in a low androgen environment , 2011, The Journal of Steroid Biochemistry and Molecular Biology.

[3]  P. Hurn,et al.  Sex shapes experimental ischemic brain injury , 2010, Steroids.

[4]  F. Tortella,et al.  Neuroproteomics: a biochemical means to discriminate the extent and modality of brain injury. , 2010, Journal of neurotrauma.

[5]  S. T. Bjorkman,et al.  Rapid loss of glutamine synthetase from astrocytes in response to hypoxia: Implications for excitotoxicity , 2010, Journal of Chemical Neuroanatomy.

[6]  M. Macleod,et al.  Therapeutic Hypothermia for Acute Ischemic Stroke: Ready to Start Large Randomized Trials? , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  J. Langridge,et al.  Polycomb Group Proteins as Epigenetic Mediators of Neuroprotection in Ischemic Tolerance , 2010, Science Signaling.

[8]  A. P. Diz,et al.  The consequences of sample pooling in proteomics: An empirical study , 2009, Electrophoresis.

[9]  W. Gerald,et al.  NF-kappaB regulates androgen receptor expression and prostate cancer growth. , 2009, The American journal of pathology.

[10]  Jian Cheng,et al.  Dose-Dependent Effects of Androgens on Outcome after Focal Cerebral Ischemia in Adult Male Mice , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  R. Fanelli,et al.  Dioxin-sensitive proteins in differentiating osteoblasts: effects on bone formation in vitro. , 2009, Toxicological sciences : an official journal of the Society of Toxicology.

[12]  B. Stegmayr,et al.  Sex Differences in Stroke Epidemiology: A Systematic Review , 2009, Stroke.

[13]  K. Kitagawa,et al.  Metabolic Downregulation: A Key to Successful Neuroprotection? , 2008, Stroke.

[14]  U. Dirnagl,et al.  Endogenous neuroprotection: Mitochondria as gateways to cerebral preconditioning? , 2008, Neuropharmacology.

[15]  S. Rocha,et al.  Regulation of hypoxia-inducible factor-1α by NF-κB , 2008, The Biochemical journal.

[16]  Philip R. Gafken,et al.  Ubiquitin–Proteasome-Mediated Synaptic Reorganization: A Novel Mechanism Underlying Rapid Ischemic Tolerance , 2008, The Journal of Neuroscience.

[17]  L. Hertz,et al.  Glutamine as an energy substrate in cultured neurons during glucose deprivation , 2007, Journal of neuroscience research.

[18]  J. S. King,et al.  Preconditioning Reprograms the Response to Ischemic Injury and Primes the Emergence of Unique Endogenous Neuroprotective Phenotypes: A Speculative Synthesis , 2007, Stroke.

[19]  A. Hoshi,et al.  Ischemic tolerance in chemical preconditioning: Possible role of astrocytic glutamine synthetase buffering glutamate‐mediated neurotoxicity , 2006, Journal of neuroscience research.

[20]  P. Boutros,et al.  Differential Expression Profiling of the Hepatic Proteome in a Rat Model of Dioxin Resistance , 2006, Molecular & Cellular Proteomics.

[21]  Avital Schurr,et al.  Lactate: The Ultimate Cerebral Oxidative Energy Substrate? , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  R. Vemuganti,et al.  Putative endogenous mediators of preconditioning‐induced ischemic tolerance in rat brain identified by genomic and proteomic analysis , 2004, Journal of neurochemistry.

[23]  D. Leibfritz,et al.  Regulation of glial metabolism studied by 13C‐NMR , 2003, NMR in biomedicine.

[24]  I. Silver,et al.  Effects of Hypothermia on Energy Metabolism in Mammalian Central Nervous System , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  Ulrich Dirnagl,et al.  Ischemic tolerance and endogenous neuroprotection , 2003, Trends in Neurosciences.

[26]  L. Bergamaschini,et al.  Neuroprotection by Complement (C1) Inhibitor in Mouse Transient Brain Ischemia , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  T. Kirino Ischemic Tolerance , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  B. Ahlemeyer,et al.  Preconditioning‐induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor‐κB , 2001, Journal of neurochemistry.

[29]  J. Bogousslavsky,et al.  Do transient ischemic attacks have a neuroprotective effect? , 2000, Neurology.

[30]  H. Diener,et al.  Respiratory Chain Inhibition Induces Tolerance to Focal Cerebral Ischemia , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  R. Currie,et al.  Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. , 1998, Stroke.

[32]  Y. Katayama,et al.  The effect of duration of cerebral ischemia on brain pyruvate dehydrogenase activity, energy metabolites, and blood flow during reperfusion in gerbil brain , 1998, Brain Research.

[33]  Kathryn S Lilley,et al.  Investigating sample pooling strategies for DIGE experiments to address biological variability , 2009, Proteomics.

[34]  T. Obrenovitch Molecular physiology of preconditioning-induced brain tolerance to ischemia. , 2008, Physiological reviews.

[35]  R. Rosenthal,et al.  Pyruvate dehydrogenase complex: Metabolic link to ischemic brain injury and target of oxidative stress , 2005, Journal of neuroscience research.

[36]  Xiongwei Zhu,et al.  Frontiers in Aging Neuroscience Aging Neuroscience , 2022 .