A New Trajectory Reversing Method for Estimating Stability Regions of Autonomous Nonlinear Systems

A new method is presented for estimating regions of asymptoticstability for autonomous nonlinear dynamical systems. The underlyinganalysis uses a combination of Lyapunov theory, simulation and sometopological properties of the stability boundary. The advantages of themethod are the accuracy of estimation of the true stability boundary,its numerical robustness and its applicability to wide classes ofdynamical systems. The main limitation is that a global Lyapunovfunction for the system must be available.

[1]  Henryk Flashner,et al.  A numerical method for computing domains of attraction for dynamical systems , 1988 .

[2]  Felix F. Wu,et al.  Stability regions of nonlinear autonomous dynamical systems , 1988 .

[3]  Mia Loccufier,et al.  An Alternative Trajectory Reversing Method for the Stability Analysis of Nonlinear Systems , 1994 .

[4]  Mia Loccufier,et al.  A new trajectory reversing method for the estimation of asymptotic stability regions , 1995 .

[5]  Tamer Basar An Invariance Principle in the Theory of Stability , 2001 .

[6]  Stephen Grossberg,et al.  Absolute stability of global pattern formation and parallel memory storage by competitive neural networks , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Pravin Varaiya,et al.  Foundations of direct methods for power system transient stability analysis , 1987 .

[8]  David J. Hill,et al.  On the stability of nonlinear networks , 1978 .

[10]  Hsiao-Dong Chiang,et al.  Quasi-stability regions of nonlinear dynamical systems: optimal estimations , 1996 .

[11]  Chia-Chi Chu,et al.  Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective , 1995, Proc. IEEE.

[12]  J. Farrell,et al.  Qualitative analysis of neural networks , 1989 .

[13]  M. Psiaki,et al.  Nonlinear system stability boundary approximation by polytopes in state space , 1993 .

[14]  Mathukumalli Vidyasagar,et al.  Maximal lyapunov functions and domains of attraction for autonomous nonlinear systems , 1981, Autom..

[15]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[16]  Equilibrium point basins of analog neural networks , 1993 .

[17]  J. Zaborszky,et al.  On the phase portrait of a class of large nonlinear dynamic systems such as the power system , 1988 .

[18]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[19]  P. Hartman Ordinary Differential Equations , 1965 .

[20]  J. Thorp,et al.  Stability regions of nonlinear dynamical systems: a constructive methodology , 1989 .

[21]  H. Schättler,et al.  Dynamics of large constrained nonlinear systems-a taxonomy theory [power system stability] , 1995, Proc. IEEE.

[22]  E. Noldus,et al.  On the estimation of asymptotic stability regions for autonomous nonlinear systems , 1995 .

[23]  R. Bellman,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[24]  Roberto Genesio,et al.  New techniques for constructing asymptotic stability regions for nonlinear systems , 1984 .

[25]  J. Palis,et al.  Geometric theory of dynamical systems , 1982 .

[26]  A. Vicino,et al.  On the estimation of asymptotic stability regions: State of the art and new proposals , 1985 .

[27]  S. Smale Differentiable dynamical systems , 1967 .

[28]  A. Vicino,et al.  Qualitative analysis of mathematical arc models using Lyapunov theory , 1982 .