Fully polynomial time approximation schemes for stochastic dynamic programs

We develop a framework for obtaining (deterministic) Fully Polynomial Time Approximation Schemes (FPTASs) for stochastic univariate dynamic programs with either convex or monotone single-period cost functions. Using our framework, we give the first FPTASs for several NP-hard problems in various fields of research such as knapsack-related problems, logistics, operations management, economics, and mathematical finance.

[1]  Peter Winkler,et al.  On the number of Eulerian orientations of a graph , 1996 .

[2]  G. Hardy,et al.  Asymptotic formulae in combinatory analysis , 1918 .

[3]  Martin E. Dyer,et al.  Approximate counting by dynamic programming , 2003, STOC '03.

[4]  Martin E. Dyer,et al.  Approximately Counting Hamilton Paths and Cycles in Dense Graphs , 1998, SIAM J. Comput..

[5]  D. Simchi-Levi,et al.  The Logic of Logistics: Theory, Algorithms, and Applications for Logistics and Supply Chain Management , 1999 .

[6]  David Gamarnik,et al.  Counting without sampling: new algorithms for enumeration problems using statistical physics , 2006, SODA '06.

[7]  Averill M. Law,et al.  The art and theory of dynamic programming , 1977 .

[8]  William D. Whisler A Stochastic Inventory Model for Rented Equipment , 1967 .

[9]  Dimitri P. Bertsekas,et al.  Approximate Dynamic Programming , 2017, Encyclopedia of Machine Learning and Data Mining.

[10]  David C. Mauer,et al.  The Determinants of Corporate Liquidity: Theory and Evidence , 1998, Journal of Financial and Quantitative Analysis.

[11]  R. Carraway,et al.  An algorithm for maximizing target achievement in the stochastic knapsack problem with normal returns , 1993 .

[12]  E. Steinberg,et al.  A Preference Order Dynamic Program for a Knapsack Problem with Stochastic Rewards , 1979 .

[13]  D. Gamarnik,et al.  Counting without sampling: Asymptotics of the log-partition function for certain statistical physics models , 2008 .

[14]  Jing-Sheng Song,et al.  Inventory Control in a Fluctuating Demand Environment , 1993, Oper. Res..

[15]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[16]  Warren B. Powell,et al.  Dynamic Programming Models and Algorithms for the Mutual Fund Cash Balance Problem , 2010, Manag. Sci..

[17]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[18]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[19]  Sartaj Sahni,et al.  Algorithms for Scheduling Independent Tasks , 1976, J. ACM.

[20]  David B. Shmoys,et al.  Approximation Algorithms for Capacitated Stochastic Inventory Control Models , 2008, Oper. Res..

[21]  Anton J. Kleywegt,et al.  The Dynamic and Stochastic Knapsack Problem with Random Sized Items , 2001, Oper. Res..

[22]  Richard W. Cuthbertson,et al.  The Logic of Logistics: Theory, Algorithms and Applications for Logistics Management , 1998, J. Oper. Res. Soc..

[23]  Chung-Lun Li,et al.  Scheduling to minimize the total compression and late costs , 1998 .

[24]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[25]  Chung-Lun Li,et al.  Fully polynomial-time approximation schemes for time-cost tradeoff problems in series-parallel project networks , 2008, Oper. Res. Lett..

[26]  Evan L. Porteus Foundations of Stochastic Inventory Theory , 2002 .

[27]  Dorit S. Hochbaum,et al.  A nonlinear Knapsack problem , 1995, Oper. Res. Lett..

[28]  Warrren B Powell,et al.  An adaptive dynamic programming algorithm for a stochastic multiproduct batch dispatch problem , 2003 .

[29]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[30]  Hau L. Lee,et al.  Lot Sizing with Random Yields: A Review , 1995, Oper. Res..

[31]  Gerhard J. Woeginger,et al.  Approximation of the supply scheduling problem , 2005, Oper. Res. Lett..

[32]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[33]  J Adda,et al.  Dynamic Economics - Quantitative methods + applications , 2003 .

[34]  P. Favati Convexity in nonlinear integer programming , 1990 .

[35]  Chaitanya Swamy,et al.  An approximation scheme for stochastic linear programming and its application to stochastic integer programs , 2006, JACM.

[36]  Iraj Saniee An Efficient Algorithm for the Multiperiod Capacity Expansion of One Location in Telecommunications , 1995, Oper. Res..

[37]  Guillermo Gallego,et al.  Optimal Policies for Production/Inventory Systems with Finite Capacity and Markov-Modulated Demand and Supply Processes , 2004, Ann. Oper. Res..

[38]  J. K. Lenstra,et al.  Deterministic Production Planning: Algorithms and Complexity , 1980 .

[39]  Toshihide Ibaraki,et al.  Resource allocation problems - algorithmic approaches , 1988, MIT Press series in the foundations of computing.

[40]  Dorit S. Hochbaum,et al.  Various notions of approximations: good, better, best, and more , 1996 .

[41]  Mikhail Y. Kovalyov,et al.  An FPTAS for a single-item capacitated economic lot-sizing problem with monotone cost structure , 2006, Math. Program..

[42]  Gerhard J. Woeginger,et al.  When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)? , 2000, INFORMS J. Comput..

[43]  J. Papastavrou,et al.  The Dynamic and Stochastic Knapsack Problem with Deadlines , 1996 .

[44]  David B. Shmoys,et al.  Approximation Algorithms for Stochastic Inventory Control Models , 2005, Math. Oper. Res..

[45]  Yuval Rabani,et al.  Allocating Bandwidth for Bursty Connections , 2000, SIAM J. Comput..

[46]  Diego Klabjan,et al.  A Fully Polynomial Time Approximation Scheme for Single-item Stochastic Inventory Control with Discrete Demand , 2022 .

[47]  Eugene L. Lawler,et al.  Fast approximation algorithms for knapsack problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[48]  M. Parlar,et al.  A periodic review inventory model with Markovian supply availability , 1995 .

[49]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[50]  Xin Chen,et al.  Coordinating Inventory Control and Pricing Strategies with Random Demand and Fixed Ordering Cost: The Finite Horizon Case , 2004, Oper. Res..

[51]  J. Vondrák,et al.  Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity , 2008 .

[52]  Xuemin (Sterling) Yan,et al.  The Determinants and Implications of Mutual Fund Cash Holdings: Theory and Evidence , 2006 .

[53]  Ashish Goel,et al.  Stochastic load balancing and related problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[54]  Harvey M. Wagner,et al.  Dynamic Version of the Economic Lot Size Model , 2004, Manag. Sci..

[55]  M. Weisbach,et al.  The Cash Flow Sensitivity of Cash , 2003 .

[56]  Bala Shetty,et al.  The nonlinear knapsack problem - algorithms and applications , 2002, Eur. J. Oper. Res..

[57]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[58]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[59]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[60]  Mordechai I. Henig,et al.  Risk Criteria in a Stochastic Knapsack Problem , 1990, Oper. Res..

[61]  Chung-Lun Li,et al.  Fully polynomial-time approximation schemes for time-cost tradeoff problems in series-parallel project networks , 2009, Oper. Res. Lett..

[62]  David Gamarnik,et al.  Simple deterministic approximation algorithms for counting matchings , 2007, STOC '07.

[63]  Y. Narahari,et al.  Nonconvex piecewise linear knapsack problems , 2009, Eur. J. Oper. Res..

[64]  Robin O. Roundy,et al.  Approximation Algorithms for Stochastic Inventory Control Models , 2007, Math. Oper. Res..

[65]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[66]  Michael W. Faulkender,et al.  Corporate Financial Policy and the Value of Cash , 2004 .

[67]  Moshe Sniedovich,et al.  Preference Order Stochastic Knapsack Problems: Methodological Issues , 1980 .

[68]  Karl-Heinz Waldmann,et al.  Cash management in a randomly varying environment , 2001, Eur. J. Oper. Res..

[69]  Allan Borodin,et al.  Toward a Model for Backtracking and Dynamic Programming , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[70]  Albert P. M. Wagelmans,et al.  Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems , 2001, Math. Oper. Res..

[71]  Jerome Adda,et al.  Dynamic Economics: Quantitative Methods and Applications , 2003 .

[72]  Paul H. Zipkin,et al.  Foundations of Inventory Management , 2000 .

[73]  Bruce H. Faaland Technical Note - The Multiperiod Knapsack Problem , 1981, Oper. Res..

[74]  S. Karlin,et al.  OPTIMAL POLICY FOR DYNAMIC INVENTORY PROCESS WITH NON-STATIONARY STOCHASTIC DEMANDS , 1960 .

[75]  David B. Shmoys,et al.  Provably Near-Optimal Sampling-Based Policies for Stochastic Inventory Control Models , 2007, Math. Oper. Res..

[76]  B. L. Miller On Minimizing Nonseparable Functions Defined on the Integers with an Inventory Application , 1971 .

[77]  K. Talluri,et al.  The Theory and Practice of Revenue Management , 2004 .

[78]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[79]  G. Loewenstein,et al.  Time Discounting and Time Preference: A Critical Review , 2002 .

[80]  J. Orlin,et al.  Fast Approximation Schemes for Multi-Criteria Flow, Knapsack, and Scheduling Problems , 1995 .

[81]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[82]  Ellis Horowitz,et al.  Exact and Approximate Algorithms for Scheduling Nonidentical Processors , 1976, JACM.

[83]  Claudio Barbieri da Cunha,et al.  The logic of logistics: theory, algorithms and applications for logistics management , 1999 .

[84]  Dmitriy Katz,et al.  Correlation decay and deterministic FPTAS for counting list-colorings of a graph , 2007, SODA '07.

[85]  Edmund S. Phelps THE ACCUMULATION OF RISKY CAPITAL: A SEQUENTIAL UTILITY ANALYSIS , 1962 .

[86]  Martin E. Dyer,et al.  The Relative Complexity of Approximate Counting Problems , 2000, Algorithmica.

[87]  E. Fama,et al.  CASH BALANCE AND SIMPLE DYNAMIC PORTFOLIO PROBLEMS WITH PROPORTIONAL COSTS , 1969 .

[88]  E. Elton,et al.  On the Cash Balance Problem , 1974 .

[89]  L. McKenzie,et al.  Turnpike Theory , 1976 .