RNA-LEGO: Combinatorial Design of Pseudoknot RNA

In this paper we enumerate $k$-noncrossing RNA pseudoknot structures with given minimum stack-length. We show that the numbers of $k$-noncrossing structures without isolated base pairs are significantly smaller than the number of all $k$-noncrossing structures. In particular we prove that the number of 3- and 4-noncrossing RNA structures with stack-length $\ge 2$ is for large $n$ given by $311.2470 \frac{4!}{n(n-1)...(n-4)}2.5881^n$ and $1.217\cdot 10^{7} n^{-{21/2}} 3.0382^n$, respectively. We furthermore show that for $k$-noncrossing RNA structures the drop in exponential growth rates between the number of all structures and the number of all structures with stack-size $\ge 2$ increases significantly. Our results are of importance for prediction algorithms for pseudoknot-RNA and provide evidence that there exist neutral networks of RNA pseudoknot structures.

[1]  C. Pleij,et al.  Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1. , 1994, Nucleic acids research.

[2]  Rosena R. X. Du,et al.  Crossings and nestings of matchings and partitions , 2005, math/0501230.

[3]  Peter F. Stadler,et al.  Combinatorics of RNA Secondary Structures , 1998, Discret. Appl. Math..

[4]  Christian M. Reidys,et al.  Combinatorics of RNA Structures with Pseudoknots , 2007, Bulletin of mathematical biology.

[5]  Christian M. Reidys,et al.  Pseudoknot RNA Structures with Arc-Length $\ge 3$ , 2007 .

[6]  Christian N. S. Pedersen,et al.  Pseudoknots in RNA Secondary Structures , 2000 .

[7]  Michael S. Waterman,et al.  Combinatorics of RNA Hairpins and Cloverleaves , 1979 .

[8]  M. Waterman Secondary Structure of Single-Stranded Nucleic Acidst , 1978 .

[9]  Batey,et al.  Tertiary Motifs in RNA Structure and Folding. , 1999, Angewandte Chemie.

[10]  J. A. Fill,et al.  Singularity analysis, Hadamard products, and tree recurrences , 2003, math/0306225.

[11]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[12]  Michael S. Waterman,et al.  Spaces of RNA Secondary Structures , 1993 .

[13]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[14]  Christian M. Reidys,et al.  Asymptotic Enumeration of RNA Structures with Pseudoknots , 2007, Bulletin of mathematical biology.

[15]  P. Schuster,et al.  Generic properties of combinatory maps: neutral networks of RNA secondary structures. , 1997, Bulletin of mathematical biology.

[16]  Tatsuya Akutsu,et al.  Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots , 2000, Discret. Appl. Math..

[17]  Philippe Flajolet,et al.  Singularity analysis, Hadamard products, and tree recurrences , 2003 .

[18]  W. Burnside Theory of Functions , 1899, Nature.

[19]  Michael S. Waterman,et al.  COMPUTATION OF GENERATING FUNCTIONS FOR BIOLOGICAL MOLECULES , 1980 .

[20]  T. Pan,et al.  Domain structure of the ribozyme from eubacterial ribonuclease P. , 1996, RNA.

[21]  Satoshi Kobayashi,et al.  Tree Adjoining Grammars for RNA Structure Prediction , 1999, Theor. Comput. Sci..

[22]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[23]  Christian M. Reidys,et al.  Crossings and Nestings in Tangled Diagrams , 2007, Electron. J. Comb..

[24]  Michael S. Waterman,et al.  Linear Trees and RNA Secondary Structure , 1994, Discret. Appl. Math..

[25]  R. Gutell,et al.  A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. , 1995, RNA.

[26]  David J. Grabiner,et al.  Random Walks in Weyl Chambers and the Decomposition of Tensor Powers , 1993 .

[27]  I. Tinoco,et al.  A base-triple structural domain in RNA. , 1992, Biochemistry.