Chiral quantum walks

Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal theory, classifying Hamiltonians and quantum circuits as time-symmetric or not in terms of the elements and geometries of their underlying networks. Many of the typical circuits of quantum information science are found to exhibit time-asymmetry. Moreover, we show that time-asymmetry in circuits can be controlled using local gates only, and can simulate time-asymmetry in Hamiltonian evolution. We experimentally implement a fundamental example in which controlled time-reversal asymmetry in a palindromic quantum circuit leads to near-perfect transport. Our results pave the way for using time-symmetry breaking to control coherent transport, and imply that time-asymmetry represents an omnipresent yet poorly understood effect in quantum information science.

[1]  T. G. Wong Quantum walk search with time-reversal symmetry breaking , 2015, 1504.07375.

[2]  D. Manzano,et al.  Symmetry and the thermodynamics of currents in open quantum systems , 2013, 1310.7370.

[3]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[4]  Oliver Hennigh,et al.  Universal State Transfer on Graphs , 2013, 1310.3885.

[5]  D. Segal,et al.  The probe technique far from equilibrium: Magnetic field symmetries of nonlinear transport , 2013, 1310.1409.

[6]  B. Sanders,et al.  Quantum frameness for CPT symmetry. , 2013, Physical review letters.

[7]  Sabre Kais,et al.  Degree distribution in quantum walks on complex networks , 2013, 1305.6078.

[8]  Hideaki Obuse,et al.  Bulk-boundary correspondence for chiral symmetric quantum walks , 2013, 1303.1199.

[9]  R. Krems,et al.  Non-adiabatic control of quantum energy transfer in ordered and disordered arrays , 2012, 1209.5327.

[10]  James D. Whitfield,et al.  Quantum Transport Enhancement by Time-Reversal Symmetry Breaking , 2012, Scientific Reports.

[11]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[12]  A. Ekert,et al.  Decoherence-assisted transport in a dimer system. , 2012, Physical review letters.

[13]  R. Laflamme,et al.  Digital quantum simulation of the statistical mechanics of a frustrated magnet , 2011, Nature Communications.

[14]  Alexander Blumen,et al.  Continuous-Time Quantum Walks: Models for Coherent Transport on Complex Networks , 2011, 1101.2572.

[15]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[16]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[17]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[18]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[19]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[20]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[21]  E. Knill,et al.  Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods , 2008, 0803.1982.

[22]  Sougato Bose,et al.  Quantum communication through spin chain dynamics: an introductory overview , 2007, 0802.1224.

[23]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[24]  D. Cory,et al.  Multispin dynamics of the solid-state NMR free induction decay , 2005, cond-mat/0501578.

[25]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[26]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[27]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[28]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[29]  Jonathan A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[30]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[31]  R. Peierls,et al.  On the Theory of the Diamagnetism of Conduction Electrons , 1997 .

[32]  D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields , 1976 .

[33]  Alexander Pines,et al.  Time-Reversal Experiments in Dipolar-Coupled Spin Systems , 1971 .

[34]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .