Advances, interactions, and future developments in the CNS, Phenix, and Rosetta structural biology software systems.

Advances in our understanding of macromolecular structure come from experimental methods, such as X-ray crystallography, and also computational analysis of the growing number of atomic models obtained from such experiments. The later analyses have made it possible to develop powerful tools for structure prediction and optimization in the absence of experimental data. In recent years, a synergy between these computational methods for crystallographic structure determination and structure prediction and optimization has begun to be exploited. We review some of the advances in the algorithms used for crystallographic structure determination in the Phenix and Crystallography & NMR System software packages and describe how methods from ab initio structure prediction and refinement in Rosetta have been applied to challenging crystallographic problems. The prospects for future improvement of these methods are discussed.

[1]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[2]  Paul D. Adams,et al.  Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution , 2012, Acta crystallographica. Section D, Biological crystallography.

[3]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[4]  A. Tramontano,et al.  Critical assessment of methods of protein structure prediction (CASP)—round IX , 2011, Proteins.

[5]  R. Kriwacki,et al.  Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. , 1999, Journal of molecular biology.

[6]  Gregory A Petsko The Grail problem , 2000, Genome Biology.

[7]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[8]  Vincent B. Chen,et al.  Structures of the Bacterial Ribosome in Classical and Hybrid States of tRNA Binding , 2011, Science.

[9]  Andrzej Joachimiak,et al.  High-throughput crystallography for structural genomics. , 2009, Current opinion in structural biology.

[10]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[11]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[12]  Randy J Read,et al.  The application of multivariate statistical techniques improves single-wavelength anomalous diffraction phasing. , 2004, Acta crystallographica. Section D, Biological crystallography.

[13]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[14]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[15]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[16]  M. DePristo,et al.  Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. , 2004, Structure.

[17]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[18]  Randy J. Read,et al.  Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[19]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[20]  Irene T Weber,et al.  Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. , 2006, Journal of molecular biology.

[21]  D. Cruickshank,et al.  Notes for authors; anisotropic parameters , 1965 .

[22]  Vijay S Pande,et al.  Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration. , 2011, Structure.

[23]  M. Levitt,et al.  Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. , 1985, Journal of molecular biology.

[24]  Randy J. Read,et al.  Improved molecular replacement by density- and energy-guided protein structure optimization , 2011, Nature.

[25]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[26]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[27]  Z. Popovic,et al.  Crystal structure of a monomeric retroviral protease solved by protein folding game players , 2011, Nature Structural &Molecular Biology.

[28]  Serge X. Cohen,et al.  Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.

[29]  Z Dauter,et al.  1.7 A structure of the stabilized REIv mutant T39K. Application of local NCS restraints. , 1999, Acta crystallographica. Section D, Biological crystallography.

[30]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[31]  Randy J. Read,et al.  Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement , 2012, Acta crystallographica. Section D, Biological crystallography.

[32]  Randy J. Read,et al.  Application of DEN refinement and automated model building to a difficult case of molecular-replacement phasing: the structure of a putative succinyl-diaminopimelate desuccinylase from Corynebacterium glutamicum , 2012, Acta crystallographica. Section D, Biological crystallography.

[33]  J. Ondrácek HipHop. A novel refinement method for protein structures , 2005 .

[34]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[35]  Randy J Read,et al.  Simple algorithm for a maximum-likelihood SAD function. , 2004, Acta crystallographica. Section D, Biological crystallography.

[36]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[37]  Rhiju Das,et al.  An enumerative stepwise ansatz enables atomic-accuracy RNA loop modeling , 2011, Proceedings of the National Academy of Sciences.

[38]  Szilvia Szép,et al.  The crystal structure of a 26-nucleotide RNA containing a hook-turn. , 2003, RNA.

[39]  Jeroen R Mesters,et al.  An ensemble of crystallographic models enables the description of novel bromate-oxoanion species trapped within a protein crystal. , 2006, Acta crystallographica. Section D, Biological crystallography.

[40]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[41]  F. Tama,et al.  Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. , 2004, Journal of molecular biology.

[42]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[43]  P. Bradley,et al.  High-resolution structure prediction and the crystallographic phase problem , 2007, Nature.

[44]  W. Hendrickson Stereochemically restrained refinement of macromolecular structures. , 1985, Methods in enzymology.

[45]  G. Sheldrick,et al.  Crystallographic ab initio protein structure solution below atomic resolution , 2009, Nature Methods.

[46]  Martyn D. Winn,et al.  MrBUMP: an automated pipeline for molecular replacement , 2007, Acta crystallographica. Section D, Biological crystallography.

[47]  Feng Ding,et al.  RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. , 2012, RNA.

[48]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[49]  Ian W. Davis,et al.  The backrub motion: how protein backbone shrugs when a sidechain dances. , 2006, Structure.

[50]  Peter Biely,et al.  Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina , 2011, Proteins.

[51]  Randy J. Read,et al.  Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias , 2008, Acta crystallographica. Section D, Biological crystallography.

[52]  R. Montange,et al.  Structure of the S-adenosylmethionine riboswitch regulatory mRNA element , 2006, Nature.

[53]  Helen M Berman,et al.  RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). , 2008, RNA.

[54]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[55]  Randy J. Read,et al.  Phenix - a comprehensive python-based system for macromolecular structure solution , 2012 .

[56]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[57]  Shuren Wang,et al.  A test of enhancing model accuracy in high-throughput crystallography , 2005, Journal of Structural and Functional Genomics.

[58]  K. Dill,et al.  Assessment of the protein‐structure refinement category in CASP8 , 2009, Proteins.

[59]  Mark A Depristo,et al.  Crystallographic refinement by knowledge-based exploration of complex energy landscapes. , 2005, Structure.

[60]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1974, Nature.

[61]  Edwin Pozharski,et al.  Percentile-based spread: a more accurate way to compare crystallographic models. , 2010, Acta crystallographica. Section D, Biological crystallography.

[62]  Axel T. Brunger,et al.  Ab initio molecular-replacement phasing for symmetric helical membrane proteins , 2007, Acta crystallographica. Section D, Biological crystallography.

[63]  Fei Long,et al.  REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. , 2004, Acta crystallographica. Section D, Biological crystallography.

[64]  Randy J. Read,et al.  A New Generation of Crystallographic Validation Tools for the Protein Data Bank , 2011, Structure.

[65]  G. J.,et al.  Refinement of Large Structures by Simultaneous Minimization of Energy and R Factor , 1978 .

[66]  Kevin Cowtan,et al.  The Buccaneer software for automated model building , 2006 .

[67]  Randy J. Read,et al.  Using SAD data in Phaser , 2011, Acta crystallographica. Section D, Biological crystallography.

[68]  Anna Tramontano,et al.  Evaluating the usefulness of protein structure models for molecular replacement , 2005, ECCB/JBI.

[69]  Randy J Read,et al.  Recent developments in phasing and structure refinement for macromolecular crystallography. , 2009, Current opinion in structural biology.

[70]  Randy J. Read,et al.  Improvement of molecular-replacement models with Sculptor , 2011, Acta crystallographica. Section D, Biological crystallography.

[71]  David C. Richardson,et al.  MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes , 2004, Nucleic Acids Res..

[72]  David Baker,et al.  Prospects for de novo phasing with de novo protein models , 2009, Acta crystallographica. Section D, Biological crystallography.

[73]  Michael Levitt,et al.  Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. , 2007, Structure.

[74]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[75]  Vincent B. Chen,et al.  KING (Kinemage, Next Generation): A versatile interactive molecular and scientific visualization program , 2009, Protein science : a publication of the Protein Society.

[76]  D S Moss,et al.  Error estimates of protein structure coordinates and deviations from standard geometry by full-matrix refinement of gammaB- and betaB2-crystallin. , 1998, Acta crystallographica. Section D, Biological crystallography.

[77]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[78]  Julia Brasch,et al.  Structures from Anomalous Diffraction of Native Biological Macromolecules , 2012, Science.

[79]  M. Delarue,et al.  On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Randy J Read,et al.  Assessment of CASP7 predictions in the high accuracy template‐based modeling category , 2007, Proteins.

[81]  Petra Fromme,et al.  Improving the accuracy of macromolecular structure refinement at 7 Å resolution. , 2012, Structure.

[82]  D. Baker,et al.  Refinement of protein structures into low-resolution density maps using rosetta. , 2009, Journal of molecular biology.

[83]  Anna Marie Pyle,et al.  RCrane: semi-automated RNA model building , 2012, Acta crystallographica. Section D, Biological crystallography.

[84]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[85]  Michael Levitt,et al.  Super-resolution biomolecular crystallography with low-resolution data , 2010, Nature.

[86]  David S. Moss,et al.  Error Estimates of Protein Structure Coordinates and Deviations from Standard Geometry by Full-Matrix Refinement of γB- and βB2-Crystallin , 1998 .

[87]  David Baker,et al.  Crystal structure of XMRV protease differs from the structures of other retropepsins , 2010, Nature Structural &Molecular Biology.

[88]  Anna Marie Pyle,et al.  Semiautomated model building for RNA crystallography using a directed rotameric approach , 2010, Proceedings of the National Academy of Sciences.

[89]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[90]  Harald Kolmar,et al.  Structure of Ecballium elaterium trypsin inhibitor II (EETI-II): a rigid molecular scaffold. , 2005, Acta crystallographica. Section D, Biological crystallography.

[91]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[92]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[93]  Richard Bertram,et al.  An improved hydrogen bond potential: Impact on medium resolution protein structures , 2002, Protein science : a publication of the Protein Society.

[94]  Randy J. Read,et al.  Interpretation of ensembles created by multiple iterative rebuilding of macromolecular models , 2007, Acta crystallographica. Section D, Biological crystallography.

[95]  Fei Long,et al.  BALBES: a molecular-replacement pipeline , 2007, Acta crystallographica. Section D, Biological crystallography.

[96]  Rhiju Das,et al.  Correcting pervasive errors in RNA crystallography through enumerative structure prediction , 2011, Nature Methods.

[97]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[98]  Harry F. Noller,et al.  Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements , 2014, Cell.

[99]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[100]  Timothy Palzkill,et al.  Co-Crystal Structures of PKG Iβ (92–227) with cGMP and cAMP Reveal the Molecular Details of Cyclic-Nucleotide Binding , 2011, PloS one.

[101]  R Diamond,et al.  On the use of normal modes in thermal parameter refinement: theory and application to the bovine pancreatic trypsin inhibitor. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[102]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .