Frequency diverse array and MIMO hybrid radar transmitter design via Cramér–Rao lower bound minimisation

Frequency diverse array (FDA) produces a range–angle-dependent transmit beampattern and offers a potential solution to localise targets in two dimensions with respect to slant range and azimuth angle. However, it is difficult to unambiguously estimate the target location information by a standard FDA radar via conventional adaptive beamforming due to its coupling range–angle response. In this study, the authors propose two FDA and multiple-input multiple-output (MIMO) hybrid radar transmitter design schemes by minimising the Cramer–Rao lower bound (CRLB) for range-dependent target localisation, namely, FDA–MIMO radar and transmit subarray FDA–MIMO (TS-FDA) radar. The former uses a small frequency increment across the MIMO antennas, whereas the latter divides the FDA elements into multiple subarrays using the same waveform within each subarray and orthogonal waveforms in distinct subarrays. The formulated CRLB minimisation problem is solved by convex optimisation. Furthermore, the targets are localised using the beamspace-based multiple signal classification algorithm. The designed FDA–MIMO and TS-FDA radars are evaluated by comparing their mean square error and cumulative distribution function performance.

[1]  Paul V. Brennan,et al.  Grating lobe control in randomised, sparsely populated MIMO radar arrays , 2012 .

[2]  Wen-Qin Wang,et al.  Nonuniform Frequency Diverse Array for Range-Angle Imaging of Targets , 2014, IEEE Sensors Journal.

[3]  Wen-Qin Wang,et al.  Frequency Diverse Array Antenna: New Opportunities , 2015, IEEE Antennas and Propagation Magazine.

[4]  Cagri Cetintepe,et al.  Multipath Characteristics of Frequency Diverse Arrays Over a Ground Plane , 2014, IEEE Transactions on Antennas and Propagation.

[5]  Jinwoo Shin,et al.  Full-wave simulation of frequency diverse array antenna using the FDTD method , 2013, 2013 Asia-Pacific Microwave Conference Proceedings (APMC).

[6]  Wen-Qin Wang,et al.  Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar , 2014, IEEE Transactions on Signal Processing.

[7]  Hugh D. Griffiths,et al.  Frequency Diverse MIMO Techniques for Radar , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Ping Li,et al.  Corrections to “Range-Angle-Dependent Beamforming of Pulsed-Frequency Diverse Array” , 2018, IEEE Transactions on Antennas and Propagation.

[9]  Yinsheng Wei,et al.  Adaptive gradient search for optimal sidelobe design of hopped-frequency waveform , 2014 .

[10]  Hongbin Li,et al.  Transmit Subaperturing for MIMO Radars With Co-Located Antennas , 2010, IEEE Journal of Selected Topics in Signal Processing.

[11]  Lei Huang,et al.  Joint Range and Angle Estimation Using MIMO Radar With Frequency Diverse Array , 2015, IEEE Transactions on Signal Processing.

[12]  Harry B. Lee,et al.  Resolution threshold of beamspace MUSIC for two closely spaced emitters , 1990, IEEE Trans. Acoust. Speech Signal Process..

[13]  Muralidhar Rangaswamy,et al.  Signaling Strategies for the Hybrid MIMO Phased-Array Radar , 2010, IEEE Journal of Selected Topics in Signal Processing.

[14]  Jun Li,et al.  Joint optimization of MIMO radar waveform and biased estimator with prior information in the presence of clutter , 2011, EURASIP J. Adv. Signal Process..

[15]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[16]  Dennis J. Picard The Wonder of Phased Arrays , 2011 .

[17]  Sergiy A. Vorobyov,et al.  Transmit Energy Focusing for DOA Estimation in MIMO Radar With Colocated Antennas , 2010, IEEE Transactions on Signal Processing.

[18]  Ahmed A. Kishk,et al.  MIMO-OFDM radar for direction estimation , 2010 .

[19]  Wen-Qin Wang,et al.  MIMO SAR OFDM Chirp Waveform Diversity Design With Random Matrix Modulation , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[20]  P. Antonik,et al.  An investigation of a frequency diverse array , 2009 .

[21]  Ijaz Mansoor Qureshi,et al.  Frequency Diverse Array Radar With Time-Dependent Frequency Offset , 2014, IEEE Antennas and Wireless Propagation Letters.

[22]  Sergiy A. Vorobyov,et al.  Phased-MIMO Radar: A Tradeoff Between Phased-Array and MIMO Radars , 2009, IEEE Transactions on Signal Processing.

[23]  Wen-Qin Wang,et al.  Range-Angle Localization of Targets by A Double-Pulse Frequency Diverse Array Radar , 2014, IEEE Journal of Selected Topics in Signal Processing.

[24]  C.J. Baker,et al.  Frequency diverse array radars , 2006, 2006 IEEE Conference on Radar.

[25]  Ijaz Mansoor Qureshi,et al.  Frequency Diverse Array Radar With Logarithmically Increasing Frequency Offset , 2015, IEEE Antennas and Wireless Propagation Letters.

[26]  Antonio De Maio,et al.  Code Design to Optimize Radar Detection Performance Under Accuracy and Similarity Constraints , 2008, IEEE Transactions on Signal Processing.

[27]  Jian Li,et al.  Range Compression and Waveform Optimization for MIMO Radar: A CramÉr–Rao Bound Based Study , 2007, IEEE Transactions on Signal Processing.

[28]  Hui Chen,et al.  Optimal Frequency Diverse Subarray Design With Cramér-Rao Lower Bound Minimization , 2015, IEEE Antennas and Wireless Propagation Letters.

[29]  Wen-qin Wang,et al.  Subarray-based frequency diverse array radar for target range-angle estimation , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[30]  A. Hizal,et al.  Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays , 2013, IEEE Transactions on Antennas and Propagation.

[31]  C. A. Aeby Space systems survivability - the protection environment , 2011 .

[32]  Michael C. Wicks,et al.  Forward-looking radar GMTI benefits using a linear frequency diverse array , 2006 .

[33]  Wen-Qin Wang,et al.  Impact of frequency increment errors on frequency diverse array MIMO in adaptive beamforming and target localization , 2015, Digit. Signal Process..