Estimating the size of laterally phase separated cholesterol domains in model membranes with Förster resonance energy transfer: a simulation study

[1]  Gregory M. Troup,et al.  Detection and characterization of laterally phase separated cholesterol domains in model lipid membranes , 2003 .

[2]  R. Jacob,et al.  Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. , 2003, Biochimica et biophysica acta.

[3]  A. McIntosh,et al.  Fluorescence and Multiphoton Imaging Resolve Unique Structural Forms of Sterol in Membranes of Living Cells* , 2003, The Journal of Biological Chemistry.

[4]  W. Higuchi,et al.  Cholesterol crystallite nucleation in supersaturated model biles from a thermodynamic standpoint. , 2002, Biochimica et biophysica acta.

[5]  E. Kaler,et al.  Characterization of model bile using fluorescence energy transfer from dehydroergosterol to dansylated lecithin. , 2001, Journal of lipid research.

[6]  M. Prieto,et al.  Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. , 2001, Biochimica et biophysica acta.

[7]  M. Prieto,et al.  Fluid-fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. , 2001, Biophysical journal.

[8]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[9]  E. Kaler,et al.  A fluorescence energy transfer study of lecithin-cholesterol vesicles in the presence of phospholipase C. , 1999, Journal of lipid research.

[10]  G. Feigenson,et al.  Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. , 1999, Biochimica et biophysica acta.

[11]  R. Mason,et al.  Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. , 1998, Journal of lipid research.

[12]  Luís M. S. Loura,et al.  Resonance energy transfer in a model system of membranes: application to gel and liquid crystalline phases. , 1996, Biophysical journal.

[13]  T. R. Baekmark,et al.  Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer. , 1996, Biophysical journal.

[14]  R. Mason,et al.  Atherosclerosis alters the composition, structure and function of arterial smooth muscle cell plasma membranes. , 1995, Biochimica et biophysica acta.

[15]  T. E. Thompson,et al.  Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. , 1992, Biochemistry.

[16]  T. Dewey,et al.  Determination of the fractal dimension of membrane protein aggregates using fluorescence energy transfer. , 1989, Biophysical journal.

[17]  E. Freire,et al.  Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. , 1982, Biophysical journal.

[18]  G. Hammes,et al.  Calculation on fluorescence resonance energy transfer on surfaces. , 1980, Biophysical journal.

[19]  E. Freire,et al.  Compositional domain structure in phosphatidylcholine--cholesterol and sphingomyelin--cholesterol bilayers. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Wolber,et al.  An analytic solution to the Förster energy transfer problem in two dimensions. , 1979, Biophysical journal.

[21]  T. E. Thompson,et al.  Energy transfer in lipid bilayers. , 1979, Biophysical journal.

[22]  L. Stryer,et al.  Surface density determination in membranes by fluorescence energy transfer. , 1978, Biochemistry.

[23]  K. Merz,et al.  Biological Membranes , 1996, Birkhäuser Boston.

[24]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[25]  L. Stryer Fluorescence energy transfer as a spectroscopic ruler. , 1978, Annual review of biochemistry.