Estimating the size of laterally phase separated cholesterol domains in model membranes with Förster resonance energy transfer: a simulation study
暂无分享,去创建一个
[1] Gregory M. Troup,et al. Detection and characterization of laterally phase separated cholesterol domains in model lipid membranes , 2003 .
[2] R. Jacob,et al. Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. , 2003, Biochimica et biophysica acta.
[3] A. McIntosh,et al. Fluorescence and Multiphoton Imaging Resolve Unique Structural Forms of Sterol in Membranes of Living Cells* , 2003, The Journal of Biological Chemistry.
[4] W. Higuchi,et al. Cholesterol crystallite nucleation in supersaturated model biles from a thermodynamic standpoint. , 2002, Biochimica et biophysica acta.
[5] E. Kaler,et al. Characterization of model bile using fluorescence energy transfer from dehydroergosterol to dansylated lecithin. , 2001, Journal of lipid research.
[6] M. Prieto,et al. Exclusion of a cholesterol analog from the cholesterol-rich phase in model membranes. , 2001, Biochimica et biophysica acta.
[7] M. Prieto,et al. Fluid-fluid membrane microheterogeneity: a fluorescence resonance energy transfer study. , 2001, Biophysical journal.
[8] J. Nagle,et al. Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.
[9] E. Kaler,et al. A fluorescence energy transfer study of lecithin-cholesterol vesicles in the presence of phospholipase C. , 1999, Journal of lipid research.
[10] G. Feigenson,et al. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. , 1999, Biochimica et biophysica acta.
[11] R. Mason,et al. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. , 1998, Journal of lipid research.
[12] Luís M. S. Loura,et al. Resonance energy transfer in a model system of membranes: application to gel and liquid crystalline phases. , 1996, Biophysical journal.
[13] T. R. Baekmark,et al. Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer. , 1996, Biophysical journal.
[14] R. Mason,et al. Atherosclerosis alters the composition, structure and function of arterial smooth muscle cell plasma membranes. , 1995, Biochimica et biophysica acta.
[15] T. E. Thompson,et al. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. , 1992, Biochemistry.
[16] T. Dewey,et al. Determination of the fractal dimension of membrane protein aggregates using fluorescence energy transfer. , 1989, Biophysical journal.
[17] E. Freire,et al. Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. , 1982, Biophysical journal.
[18] G. Hammes,et al. Calculation on fluorescence resonance energy transfer on surfaces. , 1980, Biophysical journal.
[19] E. Freire,et al. Compositional domain structure in phosphatidylcholine--cholesterol and sphingomyelin--cholesterol bilayers. , 1980, Proceedings of the National Academy of Sciences of the United States of America.
[20] P. Wolber,et al. An analytic solution to the Förster energy transfer problem in two dimensions. , 1979, Biophysical journal.
[21] T. E. Thompson,et al. Energy transfer in lipid bilayers. , 1979, Biophysical journal.
[22] L. Stryer,et al. Surface density determination in membranes by fluorescence energy transfer. , 1978, Biochemistry.
[23] K. Merz,et al. Biological Membranes , 1996, Birkhäuser Boston.
[24] J. Lakowicz. Principles of fluorescence spectroscopy , 1983 .
[25] L. Stryer. Fluorescence energy transfer as a spectroscopic ruler. , 1978, Annual review of biochemistry.