Rates of Multipartite Entanglement Transformations.

The theory of the asymptotic manipulation of pure bipartite quantum systems can be considered completely understood: the rates at which bipartite entangled states can be asymptotically transformed into each other are fully determined by a single number each, the respective entanglement entropy. In the multipartite setting, similar questions of the optimally achievable rates of transforming one pure state into another are notoriously open. This seems particularly unfortunate in the light of the revived interest in such questions due to the perspective of experimentally realizing multipartite quantum networks. In this Letter, we report substantial progress by deriving simple upper and lower bounds on the rates that can be achieved in asymptotic multipartite entanglement transformations. These bounds are based on ideas of entanglement combing and state merging. We identify cases where the bounds coincide and hence provide the exact rates. As an example, we bound rates at which resource states for the cryptographic scheme of quantum secret sharing can be distilled from arbitrary pure tripartite quantum states. This result provides further scope for quantum internet applications, supplying tools to study the implementation of multipartite protocols over quantum networks.

[1]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[2]  K. Audenaert,et al.  Asymptotic relative entropy of entanglement. , 2001, Physical review letters.

[3]  Matthias Christandl,et al.  Entanglement Distillation from Greenberger–Horne–Zeilinger Shares , 2016, ArXiv.

[4]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[5]  M. Horodecki,et al.  Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics. , 2015, Physical review letters.

[6]  Nicole Yunger Halpern,et al.  Quantum voting and violation of Arrow's Impossibility Theorem , 2015, 1501.00458.

[7]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[8]  B. Kraus,et al.  Entanglement manipulation of multipartite pure states with finite rounds of classical communication , 2016, 1607.05145.

[9]  Noah Linden,et al.  Reversibility of Local Transformations of Multiparticle Entanglement , 1999, Quantum Inf. Process..

[10]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[11]  Andreas J. Winter,et al.  Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints , 2015, ArXiv.

[12]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[13]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[14]  M. Horodecki,et al.  The asymptotic entanglement cost of preparing a quantum state , 2000, quant-ph/0008134.

[15]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[16]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  H. Briegel,et al.  Measurement-based quantum computation , 2009, 0910.1116.

[18]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[19]  Axel Dahlberg,et al.  Transforming graph states using single-qubit operations , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[21]  Jens Eisert,et al.  Entanglement combing. , 2009, Physical review letters.

[22]  John A. Smolin,et al.  Entanglement of assistance and multipartite state distillation , 2005 .

[23]  J. Eisert,et al.  Quantum network routing and local complementation , 2018, npj Quantum Information.

[24]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[25]  Colin P. Williams Quantum Computing and Quantum Communications , 1999, Lecture Notes in Computer Science.

[26]  Martin B. Plenio,et al.  Multiparticle entanglement under asymptotic positive-partial-transpose-preserving operations , 2005 .

[27]  Matthias Christandl,et al.  Asymptotic entanglement transformation between W and GHZ states , 2013, 1310.3244.

[28]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.