On Repetition-Free Binary Words of Minimal Density

In \cite{KolpakovKucherovMFCS97}, a notion of minimal proportion (density) of one letter in $n$-th power-free binary words has been introduced and some of its properties have been proved. In this paper, we proceed with this study and substantially extend some of these results. First, we introduce and analyse a general notion of minimal letter density for any infinite set of words which don't contain a specified set of ``prohibited'' subwords. We then prove that for $n$-th power-free binary words, the density function is $\frac{1}{n}+\frac{1}{n^3}+\frac{1}{n^4}+ {\cal O}(\frac{1}{n^5})$ refining the estimate from \cite{KolpakovKucherovMFCS97}. Following \cite{KolpakovKucherovMFCS97}, we also consider a natural generalization of $n$-th power-free words to $x$-th power-free words for real argument $x$. We prove that the minimal proportion of one letter in $x$-th power-free binary words, considered as a function of $x$, is discontinuous at all integer points $n\geq 3$. Finally, we give an estimate of the size of the jumps.

[1]  Christian Choffrut,et al.  Combinatorics of Words , 1997, Handbook of Formal Languages.

[2]  Gregory Kucherov,et al.  Minimal Letter Frequency in n-th Power-Free Binary Words , 1997, MFCS.

[3]  Dwight R. Bean,et al.  Avoidable patterns in strings of symbols , 1979 .

[4]  Antonio Restivo,et al.  On weakly square free words , 1983, Bull. EATCS.

[5]  Françoise Dejean,et al.  Sur un Théorème de Thue , 1972, J. Comb. Theory A.

[6]  Antonio Restivo,et al.  A Periodicity Theorem on Words and Applications , 1995, MFCS.

[7]  Jean Berstel,et al.  Axel Thue's work on repetitions in words , 1992 .

[8]  J. Berstel,et al.  Theory of codes , 1985 .

[9]  Filippo Mignosi,et al.  Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..

[10]  K. A. Baker,et al.  Growth Problems for Avoidable Words , 1989, Theor. Comput. Sci..

[11]  Julien Cassaigne Motifs evitables et regularites dans les mots , 1994 .

[12]  Maxime Crochemore,et al.  Mutually Avoiding Ternary Words of Small Exponent , 1991, Int. J. Algebra Comput..

[13]  James D. Currie,et al.  Open problems in pattern avoidance , 1993 .

[14]  James D. Currie,et al.  Cantor Sets and Dejean's Conjecture , 1996, Developments in Language Theory.

[15]  Arto Salomaa Jewels of formal language theory , 1981 .