CSPα promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity

[1]  M. Ehlers,et al.  Ubiquitination in postsynaptic function and plasticity. , 2010, Annual review of cell and developmental biology.

[2]  T. Südhof,et al.  α-Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro , 2010, Science.

[3]  Jason C. Young,et al.  Peripheral Protein Quality Control Removes Unfolded CFTR from the Plasma Membrane , 2010, Science.

[4]  R. Luján,et al.  Cysteine String Protein-α Prevents Activity-Dependent Degeneration in GABAergic Synapses , 2010, The Journal of Neuroscience.

[5]  Zhiping P Pang,et al.  Calmodulin Controls Synaptic Strength via Presynaptic Activation of Calmodulin Kinase II , 2010, The Journal of Neuroscience.

[6]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[7]  F. Fujiyama,et al.  Single Nigrostriatal Dopaminergic Neurons Form Widely Spread and Highly Dense Axonal Arborizations in the Neostriatum , 2009, The Journal of Neuroscience.

[8]  A. Segref,et al.  Think locally: control of ubiquitin‐dependent protein degradation in neurons , 2009, EMBO reports.

[9]  T. Südhof,et al.  Deletion of Mint Proteins Decreases Amyloid Production in Transgenic Mouse Models of Alzheimer's Disease , 2008, The Journal of Neuroscience.

[10]  T. Südhof,et al.  Cysteine string protein‐α is essential for the high calcium sensitivity of exocytosis in a vertebrate synapse , 2008, The European journal of neuroscience.

[11]  R. Sitia,et al.  Protein quality control in the early secretory pathway , 2008, The EMBO journal.

[12]  T. Südhof,et al.  Synaptotagmin-1, -2, and -9: Ca2+ Sensors for Fast Release that Specify Distinct Presynaptic Properties in Subsets of Neurons , 2007, Neuron.

[13]  Zhiping P. Pang,et al.  Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation , 2007, Journal of Neuroscience Methods.

[14]  Thomas C. Südhof,et al.  A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis , 2006, Cell.

[15]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[16]  T. Südhof,et al.  CSPα-deficiency causes massive and rapid photoreceptor degeneration , 2006 .

[17]  H. von Gersdorff,et al.  Physiological Temperatures Reduce the Rate of Vesicle Pool Depletion and Short-Term Depression via an Acceleration of Vesicle Recruitment , 2006, The Journal of Neuroscience.

[18]  Thomas C. Südhof,et al.  α-Synuclein Cooperates with CSPα in Preventing Neurodegeneration , 2005, Cell.

[19]  Jason C. Young,et al.  Pathways of chaperone-mediated protein folding in the cytosol , 2004, Nature Reviews Molecular Cell Biology.

[20]  T. Südhof,et al.  The Synaptic Vesicle Protein CSPα Prevents Presynaptic Degeneration , 2004, Neuron.

[21]  Thorsten Lang,et al.  Membrane fusion. , 2002, Current opinion in cell biology.

[22]  P. Arvan,et al.  Secretory Pathway Quality Control Operating in Golgi, Plasmalemmal, and Endosomal Systems , 2002, Traffic.

[23]  Hui Zhang,et al.  Cysteine String Protein Interacts with and Modulates the Maturation of the Cystic Fibrosis Transmembrane Conductance Regulator* , 2002, The Journal of Biological Chemistry.

[24]  F. Hartl,et al.  Molecular Chaperones in the Cytosol: from Nascent Chain to Folded Protein , 2002, Science.

[25]  T. Südhof,et al.  A Trimeric Protein Complex Functions as a Synaptic Chaperone Machine , 2001, Neuron.

[26]  G. Lukács,et al.  Conformational and Temperature-sensitive Stability Defects of the ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator in Post-endoplasmic Reticulum Compartments* , 2001, The Journal of Biological Chemistry.

[27]  T. Südhof,et al.  Specificity of Ca2+-dependent protein interactions mediated by the C2A domains of synaptotagmins. , 2000, Biochemistry.

[28]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[29]  R. Burgoyne,et al.  Cysteine string protein functions directly in regulated exocytosis. , 1998, Molecular biology of the cell.

[30]  R. Burgoyne,et al.  The Molecular Chaperone Function of the Secretory Vesicle Cysteine String Proteins* , 1997, The Journal of Biological Chemistry.

[31]  E. Buchner,et al.  The DnaJ-like cysteine string protein and exocytotic neurotransmitter release , 1997, Trends in Neurosciences.

[32]  T. Südhof,et al.  Essential functions of synapsins I and II in synaptic vesicle regulation , 1995, Nature.

[33]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[34]  Erich Buchner,et al.  Presynaptic dysfunction in drosophila csp mutants , 1994, Neuron.

[35]  C. Gundersen,et al.  Extensive lipidation of a Torpedo cysteine string protein. , 1994, The Journal of biological chemistry.

[36]  S. Benzer,et al.  Paralysis and early death in cysteine string protein mutants of Drosophila. , 1994, Science.

[37]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[38]  William J. Welch,et al.  ATP-induced protein Hsp70 complex dissociation requires K+ but not ATP hydrolysis , 1993, Nature.

[39]  P. Chomczyński,et al.  A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. , 1993, BioTechniques.

[40]  T. Südhof,et al.  Synaptic Vesicle Traffic: Rush Hour in the Nerve Terminal , 1993, Journal of neurochemistry.

[41]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[42]  J. Rothman,et al.  Peptide binding and release by proteins implicated as catalysts of protein assembly. , 1989, Science.