Eigen-Factors an Alternating Optimization for Back-end Plane SLAM of 3D Point Clouds

Modern depth sensors can generate a huge number of 3D points in few seconds to be latter processed by Localization and Mapping algorithms. Ideally, these algorithms should handle efficiently large sizes of Point Clouds under the assumption that using more points implies more information available. The Eigen Factors (EF) is a new algorithm that solves SLAM by using planes as the main geometric primitive. To do so, EF exhaustively calculates the error of all points at complexity $O(1)$, thanks to the {\em Summation matrix} $S$ of homogeneous points. The solution of EF is highly efficient: i) the state variables are only the sensor poses -- trajectory, while the plane parameters are estimated previously in closed from and ii) EF alternating optimization uses a Newton-Raphson method by a direct analytical calculation of the gradient and the Hessian, which turns out to be a block diagonal matrix. Since we require to differentiate over eigenvalues and matrix elements, we have developed an intuitive methodology to calculate partial derivatives in the manifold of rigid body transformations $SE(3)$, which could be applied to unrelated problems that require analytical derivatives of certain complexity. We evaluate EF and other state-of-the-art plane SLAM back-end algorithms in a synthetic environment. The evaluation is extended to ICL dataset (RGBD) and LiDAR KITTI dataset. Code is publicly available at https://github.com/prime-slam/EF-plane-SLAM.

[1]  Fu Zhang,et al.  Efficient and Consistent Bundle Adjustment on Lidar Point Clouds , 2022, IEEE Transactions on Robotics.

[2]  A. Kornilova,et al.  EVOPS Benchmark: Evaluation of Plane Segmentation from RGBD and LiDAR Data , 2022, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Lipu Zhou,et al.  LiDAR SLAM With Plane Adjustment for Indoor Environment , 2021, IEEE Robotics and Automation Letters.

[4]  Yuxiang Sun,et al.  On Bundle Adjustment for Multiview Point Cloud Registration , 2021, IEEE Robotics and Automation Letters.

[5]  Gonzalo Ferrer,et al.  Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds , 2021, 2021 European Conference on Mobile Robots (ECMR).

[6]  M. Kaess,et al.  π-LSAM: LiDAR Smoothing and Mapping With Planes , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Zheng Liu,et al.  BALM: Bundle Adjustment for Lidar Mapping , 2020, IEEE Robotics and Automation Letters.

[8]  IEEE International Conference on Robotics and Automation, ICRA 2021, Xi'an, China, May 30 - June 5, 2021 , 2021, ICRA.

[9]  Touradj Ebrahimi,et al.  Towards a Point Cloud Structural Similarity Metric , 2020, 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).

[10]  Gonzalo Ferrer,et al.  Eigen-Factors: Plane Estimation for Multi-Frame and Time-Continuous Point Cloud Alignment , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[11]  Wei Wang,et al.  Point-Plane SLAM Using Supposed Planes for Indoor Environments , 2019, Sensors.

[12]  Guillaume Lavoué,et al.  PC-MSDM: A quality metric for 3D point clouds , 2019, 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX).

[13]  Ming Liu,et al.  Tightly Coupled 3D Lidar Inertial Odometry and Mapping , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[14]  Dinesh Atchuthan,et al.  A micro Lie theory for state estimation in robotics , 2018, ArXiv.

[15]  Guoquan Huang,et al.  LIPS: LiDAR-Inertial 3D Plane SLAM , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[16]  Touradj Ebrahimi,et al.  A novel methodology for quality assessment of voxelized point clouds , 2018, Optical Engineering + Applications.

[17]  Touradj Ebrahimi,et al.  Point Cloud Quality Assessment Metric Based on Angular Similarity , 2018, 2018 IEEE International Conference on Multimedia and Expo (ICME).

[18]  Cyrill Stachniss,et al.  Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments , 2018, Robotics: Science and Systems.

[19]  Dong Tian,et al.  Geometric distortion metrics for point cloud compression , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[20]  Ji Zhang,et al.  Low-drift and real-time lidar odometry and mapping , 2017, Auton. Robots.

[21]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[22]  Giorgio Grisetti,et al.  NICP: Dense normal based point cloud registration , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Sven Behnke,et al.  Evaluation of registration methods for sparse 3D laser scans , 2015, 2015 European Conference on Mobile Robots (ECMR).

[24]  Michael Kaess,et al.  Simultaneous localization and mapping with infinite planes , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Jörg Stückler,et al.  Local multi-resolution representation for 6D motion estimation and mapping with a continuously rotating 3D laser scanner , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[27]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[28]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[29]  Chen Feng,et al.  Point-plane SLAM for hand-held 3D sensors , 2013, 2013 IEEE International Conference on Robotics and Automation.

[30]  Dennis Strelow,et al.  General and Nested Wiberg Minimization: L 2 and Maximum Likelihood , 2012, ECCV.

[31]  Henrik I. Christensen,et al.  Planar surface SLAM with 3D and 2D sensors , 2012, 2012 IEEE International Conference on Robotics and Automation.

[32]  Cyrill Stachniss,et al.  On measuring the accuracy of SLAM algorithms , 2009, Auton. Robots.

[33]  Martin Buss,et al.  Comparison of surface normal estimation methods for range sensing applications , 2009, 2009 IEEE International Conference on Robotics and Automation.

[34]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[35]  Aleksandr V. Segal,et al.  Generalized-ICP , 2009, Robotics: Science and Systems.

[36]  Andrea Censi,et al.  An ICP variant using a point-to-line metric , 2008, 2008 IEEE International Conference on Robotics and Automation.

[37]  Gert Kootstra,et al.  International Conference on Robotics and Automation (ICRA) , 2008, ICRA 2008.

[38]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[39]  Roland Siegwart,et al.  3D SLAM using planar segments , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[41]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[42]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[43]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[44]  Kari Pulli,et al.  Multiview registration for large data sets , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[45]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[46]  Robert Bergevin,et al.  Towards a General Multi-View Registration Technique , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[49]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .