Counting Classes: Thresholds, Parity, Mods, and Fewness

[1]  D. M. Barrington Some problems involving Razborov-Smolensky polynomials , 1992 .

[2]  David A. Mix Barrington,et al.  Representing Boolean functions as polynomials modulo composite numbers , 1992, STOC '92.

[3]  Jacobo Torán,et al.  Turing Machines with Few Accepting Computations and Low Sets for PP , 1992, J. Comput. Syst. Sci..

[4]  Jacobo Torán,et al.  Complexity classes defined by counting quantifiers , 1991, JACM.

[5]  Richard Beigel,et al.  Relativized Counting Classes: Relations among Thresholds, Parity, and Mods , 1991, J. Comput. Syst. Sci..

[6]  J. Tor,et al.  Complexity classesde ned by counting quanti ers * , 1991 .

[7]  U. Hertrampt Relations among MOD-classes , 1990 .

[8]  Ulrich Hertrampf,et al.  Relations Among Mod-Classes , 1990, Theor. Comput. Sci..

[9]  Jacobo Torán,et al.  Turning machines with few accepting computations and low sets for PP , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[10]  Uwe Schöning The power of counting , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[11]  Jacobo Torán An oracle characterization of the counting hierarchy , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[12]  Pau Gargallo,et al.  AN ORACLE CHARACTERIZATION OF THE COUNTING HIERARCHY , 1988 .

[13]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[14]  Ian Parberry,et al.  On the Construction of Parallel Computers from Various Bases of Boolean Functions , 1986, Theor. Comput. Sci..

[15]  Eric Allender,et al.  The Complexity of Sparse Sets in P , 1986, SCT.

[16]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[17]  David A. Russo Structural properties of complexity classes , 1985, Research in computer science.

[18]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[19]  Timothy J. Long Strong Nondeterministic Polynomial-Time Reducibilities , 1982, Theor. Comput. Sci..

[20]  Andreas Blass,et al.  On the Unique Satisfiability Problem , 1982, Inf. Control..

[21]  C. Rackoff Relativized Questions Involving Probabilistic Algorithms , 1982, JACM.

[22]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[23]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[24]  Leonard M. Adleman,et al.  Reducibility, randomness, and intractibility (Abstract) , 1977, STOC '77.

[25]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[26]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[27]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[28]  Janos Simon On some central problems in computational complexity , 1975 .

[29]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.

[30]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[31]  Jacobo Torr Complexity Classes Deened by Counting Quantiiers* , 2022 .