Generalised summation-by-parts operators and variable coefficients

Abstract High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finite difference and the discontinuous Galerkin spectral element framework. However, if generalised SBP operators are used, the treatment of the boundaries becomes more difficult since some properties of the continuous level are no longer mimicked discretely — interpolating the product of two functions will in general result in a value different from the product of the interpolations. Thus, desired properties such as conservation and stability are more difficult to obtain. Here, new formulations are proposed, allowing the creation of discretisations using general SBP operators that are both conservative and stable. Thus, several shortcomings that might be attributed to generalised SBP operators are overcome (cf. Nordstrom and Ruggiu (2017) [38] and Manzanero et al. (2017) [39] ).

[1]  David A. Kopriva,et al.  Metric Identities and the Discontinuous Spectral Element Method on Curvilinear Meshes , 2006, J. Sci. Comput..

[2]  Magnus Svärd,et al.  Review of summation-by-parts schemes for initial-boundary-value problems , 2013, J. Comput. Phys..

[3]  Thomas Brox,et al.  Numerical aspects of TV flow , 2005, Numerical Algorithms.

[4]  Andreas Meister,et al.  Application of spectral filtering to discontinuous Galerkin methods on triangulations , 2012 .

[5]  T. Grahs,et al.  From continuous recovery to discrete filtering in numerical approximations of conservation laws , 2002 .

[6]  Gregor Gassner,et al.  A Comparison of the Dispersion and Dissipation Errors of Gauss and Gauss-Lobatto Discontinuous Galerkin Spectral Element Methods , 2011, SIAM J. Sci. Comput..

[7]  Freddie D. Witherden,et al.  An extended range of stable-symmetric-conservative Flux Reconstruction correction functions , 2015 .

[8]  E. Tadmor Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[9]  Magnus Svärd,et al.  On Coordinate Transformations for Summation-by-Parts Operators , 2004, J. Sci. Comput..

[10]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[11]  Nail K. Yamaleev,et al.  A family of fourth-order entropy stable nonoscillatory spectral collocation schemes for the 1-D Navier-Stokes equations , 2017, J. Comput. Phys..

[12]  Gregor Gassner,et al.  An Energy Stable Discontinuous Galerkin Spectral Element Discretization for Variable Coefficient Advection Problems , 2014, SIAM J. Sci. Comput..

[13]  Philipp Öffner,et al.  Extended skew-symmetric form for summation-by-parts operators and varying Jacobians , 2017, J. Comput. Phys..

[14]  H. Kreiss,et al.  On the stability definition of difference approximations for the initial boundary value problem , 1993 .

[15]  T. Sonar,et al.  Data analysis and entropy steered discrete filtering for the numerical treatment of conservation laws , 2002 .

[16]  Philipp Öffner,et al.  Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..

[17]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[18]  D. Gottlieb,et al.  The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes , 1993 .

[19]  Travis Calob Fisher,et al.  High-order L2 stable multi-domain finite difference method for compressible flows , 2012 .

[20]  Travis C. Fisher,et al.  High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains , 2013, J. Comput. Phys..

[21]  David C. Del Rey Fernández,et al.  Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .

[22]  David C. Del Rey Fernández,et al.  A generalized framework for nodal first derivative summation-by-parts operators , 2014, J. Comput. Phys..

[23]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[24]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[25]  Gregor Gassner,et al.  A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations , 2016, Appl. Math. Comput..

[26]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[27]  Thorsten Grahs,et al.  Image Processing for Numerical Approximations of Conservation Laws: Nonlinear Anisotropic Artificial Dissipation , 2001, SIAM J. Sci. Comput..

[28]  Robert Michael Kirby,et al.  Filtering in Legendre spectral methods , 2008, Math. Comput..

[29]  Gregor Gassner,et al.  An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry , 2015, J. Comput. Phys..

[30]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[31]  Sigrun Ortleb A Kinetic Energy Preserving DG Scheme Based on Gauss–Legendre Points , 2017, J. Sci. Comput..

[32]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[33]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[34]  Claus-Dieter Munz,et al.  Efficient Parallelization of a Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells , 2016, Journal of Scientific Computing.

[35]  Claus-Dieter Munz,et al.  Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Subcells , 2014 .

[36]  Steven H. Frankel,et al.  Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces , 2014, SIAM J. Sci. Comput..

[37]  Philippe G. LeFloch,et al.  Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder , 2002, SIAM J. Numer. Anal..

[38]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[39]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[40]  David L. Darmofal,et al.  Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation , 2010, J. Comput. Phys..

[41]  Gregor Gassner,et al.  Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations , 2016, J. Comput. Phys..

[42]  T. Sonar,et al.  An extended Discontinuous Galerkin and Spectral Difference Method with modal filtering , 2013 .

[43]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[44]  Ken Mattsson,et al.  Boundary Procedures for Summation-by-Parts Operators , 2003, J. Sci. Comput..

[45]  Andreas Meister,et al.  A comparison of the Discontinuous-Galerkin- and Spectral-Difference-Method on triangulations using PKD polynomials , 2012, J. Comput. Phys..

[46]  Timothy C. Warburton,et al.  Taming the CFL Number for Discontinuous Galerkin Methods on Structured Meshes , 2008, SIAM J. Numer. Anal..

[47]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[48]  Jean-Luc Guermond,et al.  From Suitable Weak Solutions to Entropy Viscosity , 2011, J. Sci. Comput..

[49]  Ulrik Skre Fjordholm,et al.  High-order accurate entropy stable numercial schemes for hyperbolic conservation laws , 2013 .

[50]  Zhi Jian Wang,et al.  A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids , 2009, J. Comput. Phys..

[51]  Hendrik Ranocha,et al.  Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations , 2017, J. Sci. Comput..

[52]  Jan Nordström,et al.  New developments for increased performance of the SBP-SAT finite difference technique , 2015 .

[53]  R. LeVeque Numerical methods for conservation laws , 1990 .

[54]  Jan Nordström,et al.  Error Boundedness of Discontinuous Galerkin Spectral Element Approximations of Hyperbolic Problems , 2017, J. Sci. Comput..

[55]  Gregor J. Gassner,et al.  A kinetic energy preserving nodal discontinuous Galerkin spectral element method , 2014 .

[56]  Antonio Huerta,et al.  A simple shock‐capturing technique for high‐order discontinuous Galerkin methods , 2012 .

[57]  Matteo Parsani,et al.  Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations , 2015, J. Comput. Phys..

[58]  Hendrik Ranocha SBP operators for CPR methods: Master's thesis , 2016 .

[59]  Jan Nordstr ERROR BOUNDED SCHEMES FOR TIME-DEPENDENT HYPERBOLIC PROBLEMS ∗ , 2007 .

[60]  Olsson,et al.  SUMMATION BY PARTS, PROJECTIONS, AND STABILITY. I , 2010 .

[61]  H. Keller,et al.  Difference Methods for Boundary Value Problems in Ordinary Differential Equations , 1975 .

[62]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[63]  A. Bressan,et al.  Vanishing Viscosity Solutions of Nonlinear Hyperbolic Systems , 2001, math/0111321.

[64]  Andreas Meister,et al.  A positivity preserving and well-balanced DG scheme using finite volume subcells in almost dry regions , 2016, Appl. Math. Comput..

[65]  Jan Nordström,et al.  On conservation and stability properties for summation-by-parts schemes , 2017, J. Comput. Phys..

[66]  Jan Nordström,et al.  Finite volume approximations and strict stability for hyperbolic problems , 2001 .

[67]  Eitan Tadmor,et al.  Arbitrarily High-order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws , 2012, SIAM J. Numer. Anal..

[68]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[69]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[70]  Thorsten Grahs,et al.  Entropy-Controlled Artificial Anisotropic Diffusion for the Numerical Solution of Conservation Laws Based on Algorithms from Image Processing , 2002, J. Vis. Commun. Image Represent..

[71]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[72]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[73]  Gregor Gassner,et al.  On the Quadrature and Weak Form Choices in Collocation Type Discontinuous Galerkin Spectral Element Methods , 2010, J. Sci. Comput..

[74]  Jan Nordström,et al.  Finite volume methods, unstructured meshes and strict stability for hyperbolic problems , 2003 .

[75]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[76]  Esteban Ferrer,et al.  Insights on Aliasing Driven Instabilities for Advection Equations with Application to Gauss–Lobatto Discontinuous Galerkin Methods , 2017, Journal of Scientific Computing.

[77]  Jan Nordström,et al.  Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation , 2006, J. Sci. Comput..

[78]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..

[79]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[80]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[81]  David C. Del Rey Fernández,et al.  Multidimensional Summation-by-Parts Operators: General Theory and Application to Simplex Elements , 2015, SIAM J. Sci. Comput..

[82]  Jason E. Hicken,et al.  Summation-by-parts operators and high-order quadrature , 2011, J. Comput. Appl. Math..

[83]  P. Olsson Summation by parts, projections, and stability. II , 1995 .

[84]  Freddie D. Witherden,et al.  PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach , 2013, Comput. Phys. Commun..

[85]  Nail K. Yamaleev,et al.  Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions , 2013, J. Comput. Phys..

[86]  H. T. Huynh,et al.  High-Order Methods for Computational Fluid Dynamics: A Brief Review of Compact Differential Formulations on Unstructured Grids , 2013 .

[87]  Hendrik Ranocha,et al.  Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods , 2016, GEM - International Journal on Geomathematics.