Transforming Comparison Model Lower Bounds to the Parallel-Random-Access-Machine

We provide general transformations of lower bounds in Valiant's parallel-comparison-decision-tree model to lower bounds in the priority concurrent-read concurrent-write parallel-random-access-machine model. The proofs rely on standard Ramsey-theoretic arguments that simplify the structure of the computation by restricting the input domain. The transformation of comparison model lower bounds, which are usually easier to obtain, to the parallel-random-access-machine, unifies some known lower bounds and gives new lower bounds for several problems.

[1]  Yossi Matias,et al.  Triply-Logarithmic Upper and Lower Bounds for Minimum, Range Minima, and Related Problems with Integer Inputs , 1993, WADS.

[2]  A. Ingólfsdóttir A Semantic Theory for Value–Passing Processes Late Approach Part I: A Denotational Model and Its Complete Axiomatization , 1995 .

[3]  Kim G. Larsen,et al.  A Constraint Oriented Proof Methodology Based on Modal Transition Systems , 1994, TACAS.

[4]  Alberto Apostolico,et al.  An Optimal O(log log N)-Time Parallel Algorithm for Detecting All Squares in a String , 1996, SIAM J. Comput..

[5]  Artur Czumaj,et al.  Lower Bound for String Matching on PRAM , 1995 .

[6]  Kim G. Larsen,et al.  Synthesizing Distinguishing Formulae for Real Time Systems , 1994, Nord. J. Comput..

[7]  L. Aceto,et al.  A Complete Equational Axiomatization for Prefix Iteration with Silent Steps , 1995 .

[8]  J. Spencer Ramsey Theory , 1990 .

[9]  P. Erdös,et al.  Combinatorial Theorems on Classifications of Subsets of a Given Set , 1952 .

[10]  Noga Alon,et al.  Parallel comparison algorithms for approximation problems , 1991, Comb..

[11]  Shlomo Moran,et al.  Applications of Ramsey's theorem to decision tree complexity , 1985, JACM.

[12]  János Komlós,et al.  Optimal Parallel Selection has Complexity O(Log Log n) , 1989, J. Comput. Syst. Sci..

[13]  Igor Walukiewicz A Complete Deductive System for the-Calculus , 1995, LICS 1995.

[14]  Leslie G. Valiant,et al.  Parallelism in Comparison Problems , 1975, SIAM J. Comput..

[15]  Uzi Vishkin,et al.  Finding all nearest neighbors for convex polygons in parallel: A new lower bound technique and a matching algorithm , 1990, Discret. Appl. Math..

[16]  Uzi Vishkin,et al.  Finding the Maximum, Merging, and Sorting in a Parallel Computation Model , 1981, J. Algorithms.

[17]  Peter Bro Miltersen,et al.  Dynamic Algorithms for the Dyck Languages , 1995, WADS.

[18]  Allan Borodin,et al.  Routing, Merging, and Sorting on Parallel Models of Computation , 1985, J. Comput. Syst. Sci..

[19]  Noga Alon,et al.  Finding an Approximate Maximum , 1989, SIAM J. Comput..

[20]  Endre Szemerédi,et al.  The Parallel Complexity of Element Distinctness is Omega (sqrt(log n)) , 1988, SIAM J. Discret. Math..

[21]  Johan Håstad,et al.  Optimal bounds for decision problems on the CRCW PRAM , 1987, STOC.

[22]  Friedhelm Meyer auf der Heide,et al.  The Complexity of Parallel Sorting , 1987, SIAM J. Comput..

[23]  Friedhelm Meyer auf der Heide,et al.  The complexity of parallel sorting , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[24]  Yossi Azar,et al.  Parallel selection , 1990, Discret. Appl. Math..

[25]  Kim G. Larsen,et al.  From Timed Automata to Logic - and Back , 1995, MFCS.

[26]  David A. Basin,et al.  Hardware Verification using Monadic Second-Order Logic , 1995, CAV.

[27]  Jeff Edmonds,et al.  Lower bounds with smaller domain size on concurrent write parallel machines , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[28]  Allan Borodin,et al.  Routing, merging and sorting on parallel models of computation , 1982, STOC '82.

[29]  Yossi Azar,et al.  Tight Comparison Bounds on the Complexity of Parallel Sorting , 2018, SIAM J. Comput..

[30]  Zvi Galil,et al.  A lower bound for parallel string matching , 1991, STOC '91.

[31]  A. Tsarpalias,et al.  A Combinatorial Theorem , 1981, J. Comb. Theory, Ser. A.

[32]  A. Wigderson,et al.  THE PARALLEL COMPLEXITY OF ELEMENT DISTINCTNESS IS f ( x / logn ) * , 1988 .

[33]  Lars R. Knudsen Partial and Higher Order Differentials and Applications to the DES , 1995 .

[34]  Ravi B. Boppana,et al.  Optimal separations between concurrent-write parallel machines , 1989, STOC '89.