A Robust Preconditioner for Distributed Optimal Control for Stokes Flow with Control Constraints

This work is devoted to the construction and analysis of robust solution techniques for the distributed optimal control problem for the Stokes equations with inequality constraints on the control. There the first order system of necessary and sufficient optimality conditions is nonlinear. A primal-dual active set method is applied in order to linearize the system. In every step a linear saddle point system has to be solved. For this system, we analyze a block-diagonal preconditioner that is robust with respect to the discretization parameter as well as the active set.

[1]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[2]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[3]  J. Pasciak,et al.  Iterative techniques for time dependent Stokes problems , 1997 .

[4]  Ulrich Langer,et al.  A Frequency-Robust Solver for the Time-Harmonic Eddy Current Problem , 2012 .

[5]  Kent-André Mardal,et al.  Uniform preconditioners for the time dependent Stokes problem , 2004, Numerische Mathematik.

[6]  W. Zulehner Non-standard Norms and Robust Estimates for Saddle Point Problems , 2011 .

[7]  Gundolf Haase,et al.  Adaptive Domain Decomposition Methods for Finite and Boundary Element Equations , 1997 .

[8]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[9]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[10]  Walter Zulehner,et al.  Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..

[11]  Juan Carlos de los Reyes Primal-dual active set method for control constrained optimal control of the Stokes equations , 2006, Optim. Methods Softw..

[12]  Maxim A. Olshanskii,et al.  On the Convergence of a Multigrid Method for Linear Reaction-Diffusion Problems , 2000, Computing.

[13]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[14]  J. Cahouet,et al.  Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .

[15]  Zvi Ziegler,et al.  Approximation theory and applications , 1983 .

[16]  Maxim A. Olshanskii,et al.  Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations , 2006, Numerische Mathematik.

[17]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[18]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[19]  Ekkehard W. Sachs,et al.  Preconditioned Conjugate Gradient Method for Optimal Control Problems with Control and State Constraints , 2010, SIAM J. Matrix Anal. Appl..

[20]  Huidong Yang,et al.  Numerical simulation of fluid-structure interaction problems on hybrid meshes with algebraic multigrid methods , 2011, J. Comput. Appl. Math..

[21]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..