The efficiency of indicator-based local search for multi-objective combinatorial optimisation problems
暂无分享,去创建一个
Edmund K. Burke | Arnaud Liefooghe | Matthieu Basseur | K. Le | E. Burke | A. Liefooghe | K. Le | M. Basseur
[1] Thomas Stützle,et al. A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices , 2006, Eur. J. Oper. Res..
[2] Eckart Zitzler,et al. Indicator-Based Selection in Multiobjective Search , 2004, PPSN.
[3] Nicolas Jozefowiez,et al. On the Integration of a TSP Heuristic into an EA for the Bi-objective Ring Star Problem , 2008, Hybrid Metaheuristics.
[4] Mitsuo Gen,et al. Modification of Local Search Directions for Non-dominated Solutions in CellularMultiobjective Genetic Algorithms forPattern Classification Problems , 2003, EMO.
[5] El-Ghazali Talbi,et al. ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.
[6] Eckart Zitzler,et al. Handling Uncertainty in Indicator-Based Multiobjective Optimization , 2006 .
[7] D KnowlesJoshua,et al. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000 .
[8] Joseph Y.-T. Leung,et al. Minimizing Total Tardiness on One Machine is NP-Hard , 1990, Math. Oper. Res..
[9] Carlos M. Fonseca,et al. Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.
[10] Tobias Friedrich,et al. Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice , 2009, EMO.
[11] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[12] Nikolaus Hansen,et al. A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.
[13] Éric D. Taillard,et al. Benchmarks for basic scheduling problems , 1993 .
[14] Yeong-Dae Kim. Minimizing total tardiness in permutation flowshops , 1995 .
[15] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[16] Sanja Petrovic,et al. An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling , 2004, Metaheuristics for Multiobjective Optimisation.
[17] Michael Pilegaard Hansen,et al. Tabu Search for Multiobjective Optimization: MOTS , 1997 .
[18] Edmund K. Burke,et al. Indicator-based multi-objective local search , 2007, 2007 IEEE Congress on Evolutionary Computation.
[19] Joshua D. Knowles. Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .
[20] Peter J. Fleming,et al. Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.
[21] Xavier Gandibleux,et al. Metaheuristics for Multiobjective Optimisation , 2004, Lecture Notes in Economics and Mathematical Systems.
[22] Marco Laumanns,et al. A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.
[23] David W. Corne,et al. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.
[24] Hendrik Van Landeghem,et al. The State of the Art of Nurse Rostering , 2004, J. Sched..
[25] C. Fonseca,et al. GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .
[26] Tong Heng Lee,et al. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..
[27] Hisao Ishibuchi,et al. A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.
[28] Dario Landa Silva,et al. A Simple Evolutionary Algorithm with Self-adaptation for Multi-objective Nurse Scheduling , 2008, Adaptive and Multilevel Metaheuristics.
[29] Nicola Beume,et al. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.
[30] Graham Kendall,et al. Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , 2013 .
[31] Inmaculada Rodríguez Martín,et al. The Ring Star Problem: Polyhedral analysis and exact algorithm , 2004, Networks.
[32] Kathryn A. Dowsland,et al. Simulated Annealing , 1989, Encyclopedia of GIS.
[33] John J. Grefenstette,et al. Genetic algorithms and their applications , 1987 .
[34] Jan Karel Lenstra,et al. Complexity of machine scheduling problems , 1975 .
[35] Carlos Cotta,et al. Adaptive and multilevel metaheuristics , 2008 .
[36] Matthieu Basseur. Design of cooperative algorithms for multi-objective optimization: application to the flow-shop scheduling problem , 2006, 4OR.
[37] A. Nagar,et al. Multiple and bicriteria scheduling : A literature survey , 1995 .
[38] Arnaud Liefooghe,et al. A Study on Dominance-Based Local Search Approaches for Multiobjective Combinatorial Optimization , 2009, SLS.
[39] Peter J. Bentley,et al. Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .
[40] Peter Rossmanith,et al. Simulated Annealing , 2008, Taschenbuch der Algorithmen.
[41] Lothar Thiele,et al. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .
[42] Andrew Lim,et al. Nurse rostering problems - a bibliographic survey , 2003, Eur. J. Oper. Res..
[43] Clarisse Dhaenens,et al. A Hybrid Evolutionary Approach for Multicriteria Optimization Problems: Application to the Flow Shop , 2001, EMO.
[44] Marco Laumanns,et al. SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .
[45] D. J. Smith,et al. A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.
[46] E.L. Lawler,et al. Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .
[47] X. Gandibleux,et al. Approximative solution methods for multiobjective combinatorial optimization , 2004 .
[48] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[49] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[50] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.
[51] El-Ghazali Talbi,et al. Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).