The efficiency of indicator-based local search for multi-objective combinatorial optimisation problems

In the last few years, a significant number of multi-objective metaheuristics have been proposed in the literature in order to address real-world problems. Local search methods play a major role in many of these metaheuristic procedures. In this paper, we adapt a recent and popular indicator-based selection method proposed by Zitzler and Künzli in 2004, in order to define a population-based multi-objective local search. The proposed algorithm is designed in order to be easily adaptable, parameter independent and to have a high convergence rate. In order to evaluate the capacity of our algorithm to reach these goals, a large part of the paper is dedicated to experiments. Three combinatorial optimisation problems are tested: a flow shop problem, a ring star problem and a nurse scheduling problem. The experiments show that our algorithm can be applied with success to different types of multi-objective optimisation problems and that it outperforms some classical metaheuristics. Furthermore, the parameter sensitivity analysis enables us to provide some useful guidelines about how to set the parameters.

[1]  Thomas Stützle,et al.  A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices , 2006, Eur. J. Oper. Res..

[2]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[3]  Nicolas Jozefowiez,et al.  On the Integration of a TSP Heuristic into an EA for the Bi-objective Ring Star Problem , 2008, Hybrid Metaheuristics.

[4]  Mitsuo Gen,et al.  Modification of Local Search Directions for Non-dominated Solutions in CellularMultiobjective Genetic Algorithms forPattern Classification Problems , 2003, EMO.

[5]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[6]  Eckart Zitzler,et al.  Handling Uncertainty in Indicator-Based Multiobjective Optimization , 2006 .

[7]  D KnowlesJoshua,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000 .

[8]  Joseph Y.-T. Leung,et al.  Minimizing Total Tardiness on One Machine is NP-Hard , 1990, Math. Oper. Res..

[9]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[10]  Tobias Friedrich,et al.  Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice , 2009, EMO.

[11]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[12]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[13]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[14]  Yeong-Dae Kim Minimizing total tardiness in permutation flowshops , 1995 .

[15]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[16]  Sanja Petrovic,et al.  An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling , 2004, Metaheuristics for Multiobjective Optimisation.

[17]  Michael Pilegaard Hansen,et al.  Tabu Search for Multiobjective Optimization: MOTS , 1997 .

[18]  Edmund K. Burke,et al.  Indicator-based multi-objective local search , 2007, 2007 IEEE Congress on Evolutionary Computation.

[19]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[20]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[21]  Xavier Gandibleux,et al.  Metaheuristics for Multiobjective Optimisation , 2004, Lecture Notes in Economics and Mathematical Systems.

[22]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[23]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[24]  Hendrik Van Landeghem,et al.  The State of the Art of Nurse Rostering , 2004, J. Sched..

[25]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[26]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[27]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[28]  Dario Landa Silva,et al.  A Simple Evolutionary Algorithm with Self-adaptation for Multi-objective Nurse Scheduling , 2008, Adaptive and Multilevel Metaheuristics.

[29]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[30]  Graham Kendall,et al.  Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , 2013 .

[31]  Inmaculada Rodríguez Martín,et al.  The Ring Star Problem: Polyhedral analysis and exact algorithm , 2004, Networks.

[32]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[33]  John J. Grefenstette,et al.  Genetic algorithms and their applications , 1987 .

[34]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[35]  Carlos Cotta,et al.  Adaptive and multilevel metaheuristics , 2008 .

[36]  Matthieu Basseur Design of cooperative algorithms for multi-objective optimization: application to the flow-shop scheduling problem , 2006, 4OR.

[37]  A. Nagar,et al.  Multiple and bicriteria scheduling : A literature survey , 1995 .

[38]  Arnaud Liefooghe,et al.  A Study on Dominance-Based Local Search Approaches for Multiobjective Combinatorial Optimization , 2009, SLS.

[39]  Peter J. Bentley,et al.  Finding Acceptable Solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms , 1998 .

[40]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[41]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[42]  Andrew Lim,et al.  Nurse rostering problems - a bibliographic survey , 2003, Eur. J. Oper. Res..

[43]  Clarisse Dhaenens,et al.  A Hybrid Evolutionary Approach for Multicriteria Optimization Problems: Application to the Flow Shop , 2001, EMO.

[44]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[45]  D. J. Smith,et al.  A Study of Permutation Crossover Operators on the Traveling Salesman Problem , 1987, ICGA.

[46]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[47]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[48]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[49]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[50]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[51]  El-Ghazali Talbi,et al.  Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).