Effect of TiC Reinforcement on Densification, Structural Evolution and High-Temperature Oxidation Behaviour of ZrB_2-20 vol pct SiC Composite

[1]  R. Mitra,et al.  Oxidation Resistance and Evolution of Multi-layered Oxide Scale During Isothermal and Cyclic Exposure of ZrB2–SiC–LaB6 Composites at 1300 °C to 1500 °C , 2021, Metallurgical and Materials Transactions A.

[2]  P. Sengupta,et al.  Structure–property correlation in a novel ZrB2–SiC ultrahigh-temperature ceramic composite with Al-alloy sinter additive , 2021, Journal of Materials Science.

[3]  S. M. Arab,et al.  On the oxidation behavior of ZrB 2 –SiC–VC composites , 2021, International Journal of Applied Ceramic Technology.

[4]  O. Grigoriev,et al.  Structure, Strength, and Oxidation Resistance of Ultrahigh-Temperature ZrB2–SiC–WC Ceramics , 2021, Powder Metallurgy and Metal Ceramics.

[5]  S. Basu,et al.  Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite , 2021 .

[6]  Mehdi Shahedi Asl,et al.  Characterization of ZrB2–TiC composites reinforced with short carbon fibers , 2020 .

[7]  A. Mukhopadhyay,et al.  Review on ultra-high temperature boride ceramics , 2020, Progress in Materials Science.

[8]  Mehdi Shahedi Asl,et al.  Solid solution formation during spark plasma sintering of ZrB2–TiC–graphite composites , 2020 .

[9]  Z. Balak,et al.  Fracture toughness and hardness investigation in ZrB2–SiC–ZrC composite , 2020 .

[10]  H. Lu,et al.  The influence of additive and temperature on thermal shock resistance of ZrB2 based composites fabricated by Spark Plasma Sintering , 2020 .

[11]  Mehdi Shahedi Asl,et al.  Influence of vanadium content on the characteristics of spark plasma sintered ZrB2–SiC–V composites , 2019, Journal of Alloys and Compounds.

[12]  H. S. Maiti,et al.  Zirconia: A Unique Multifunctional Ceramic Material , 2019, Transactions of the Indian Institute of Metals.

[13]  Brahma Raju Golla,et al.  Effect of tantalum addition on microstructure and oxidation of spark plasma sintered ZrB2-20vol% SiC composites , 2019, Ceramics International.

[14]  I. Manna,et al.  Advanced High-Temperature Structural Materials for Aerospace and Power Sectors: A Critical Review , 2019, Transactions of the Indian Institute of Metals.

[15]  Mehdi Shahedi Asl,et al.  Pressureless sintering of ZrB2 ceramics codoped with TiC and graphite , 2019, International Journal of Refractory Metals and Hard Materials.

[16]  Shuhao Wang,et al.  Improved both mechanical and anti-oxidation performances of ZrB2-SiC ceramics with molybdenum disilicide addition , 2019, Materials Chemistry and Physics.

[17]  Y. Kubota,et al.  Oxidation of ZrB2 and its composites: a review , 2018, Journal of Materials Science.

[18]  H. Kleebe,et al.  Understanding the oxidation behavior of a ZrB2–MoSi2 composite at ultra-high temperatures , 2018, Acta Materialia.

[19]  C. Mallak Death on Orbit: Extreme Environmental Conditions and the Deaths of American Astronauts , 2018, Academic forensic pathology.

[20]  Y. Kubota,et al.  Initial oxidation behaviors of ZrB2-SiC-ZrC ternary composites above 2000 °C , 2018 .

[21]  Y. Kubota,et al.  Oxidation behaviors of ZrB2–SiC binary composites above 2000 °C , 2017 .

[22]  J. Zou,et al.  Thermoablative resistance of ZrB 2 -SiC-WC ceramics at 2400 °C , 2017 .

[23]  N. Padture,et al.  Inhomogeneous oxidation of ZrB2-SiC ultra-high-temperature ceramic particulate composites and its mitigation , 2017 .

[24]  H. Kleebe,et al.  Critical oxidation behavior of Ta-containing ZrB2 composites in the 1500–1650 °C temperature range , 2017 .

[25]  Y. Kubota,et al.  Oxidation behavior of ZrB2-SiC-ZrC at 1700 °C , 2017 .

[26]  G. Hilmas,et al.  Ultra-high temperature ceramics: Materials for extreme environments , 2017 .

[27]  H. Kleebe,et al.  Super-strong materials for temperatures exceeding 2000 °C , 2017, Scientific Reports.

[28]  Z. Kováčová,et al.  Influence of sintering temperature, SiC particle size and Y2O3 addition on the densification, microstructure and oxidation resistance of ZrB2–SiC ceramics , 2016 .

[29]  Vajinder Singh,et al.  Oxidation Behavior of ZrB2–SiC Composites at 1650 °C , 2016, Oxidation of Metals.

[30]  B. Basu,et al.  Development of ZrB2–SiC–Ti by multi stage spark plasma sintering at 1600°C , 2016 .

[31]  Guo‐Jun Zhang,et al.  Microstructures, solid solution formation and high-temperature mechanical properties of ZrB2 ceramics doped with 5 vol.% WC , 2015 .

[32]  William E Lee,et al.  Effect of La2O3 addition on long-term oxidation kinetics of ZrB2-SiC and HfB2-SiC ultra-high temperature ceramics , 2014 .

[33]  D. K. Kim,et al.  Oxidation behavior of ZrB2-xSiC composites at 1500 °C under different oxygen partial pressures , 2014 .

[34]  S. Chakraborty,et al.  Mechanical and Thermal Properties of Hot-Pressed ZrB2-SiC Composites , 2014, Metallurgical and Materials Transactions A.

[35]  G. Hilmas,et al.  Thermal Properties of (Zr,TM)B2 Solid Solutions with TM = Hf, Nb, W, Ti, and Y , 2014 .

[36]  V. Garnier,et al.  Oxidation behavior of nano-scaled and micron-scaled TiC powders under air , 2013 .

[37]  G. Hilmas,et al.  Oxidation of Zirconium Diboride with Niobium Additions , 2013 .

[38]  V. Jayaram,et al.  Densification mechanisms during hot pressing of ZrB2-20 vol.% SiC composite , 2013 .

[39]  William E Lee,et al.  Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering , 2013 .

[40]  D. Sciti,et al.  Effect of different sintering aids on thermo–mechanical properties and oxidation of SiC fibers – Reinforced ZrB2 composites , 2013 .

[41]  Bjørn Clausen,et al.  Measurement of thermal residual stresses in ZrB2–SiC composites , 2011 .

[42]  William E Lee,et al.  Toward Oxidation-Resistant ZrB2-SiC Ultra High Temperature Ceramics , 2011 .

[43]  Yue Zhang,et al.  Oxidation of zirconium diboride–silicon carbide ceramics under an oxygen partial pressure of 200 Pa: Formation of zircon , 2010 .

[44]  Guo‐Jun Zhang,et al.  Oxidation resistance and strength retention of ZrB2–SiC ceramics , 2010 .

[45]  S. Du,et al.  Effect of sintering temperature and holding time on the microstructure and mechanical properties of ZrB2–SiCw composites , 2009 .

[46]  D. Ansel,et al.  Interdiffusion in β-Ti–Zr binary alloys , 2009 .

[47]  P. Agraval,et al.  Thermodynamic assessment of the Cu-Ti-Zr system. II. Cu-Zr and Ti-Zr systems , 2008 .

[48]  Jiecai Han,et al.  High-Temperature Oxidation at 1900°C of ZrB2-xSiC Ultrahigh-Temperature Ceramic Composites , 2008 .

[49]  Yutaka Kagawa,et al.  Spark Plasma Sintering of Zirconium Diborides , 2008 .

[50]  J. Zaykoski,et al.  High‐Temperature Chemistry and Oxidation of ZrB2 Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2 , 2008 .

[51]  John W. Halloran,et al.  Rapid oxidation characterization of ultra-high temperature ceramics , 2007 .

[52]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[53]  Mark M. Opeka,et al.  A Model for the Oxidation of ZrB2, HfB2 and TiB2 (Postprint) , 2007 .

[54]  T. Fukunaga,et al.  Local structure of deuterated Ti–Zr alloy , 2002 .

[55]  T. Troczynski,et al.  Oxidation of TiB2 Powders below 900°C , 1996 .

[56]  R. J. Schultz,et al.  Diffusion of Ti in α-Zr single crystals , 1994 .

[57]  J. Hlaváč,et al.  INORGANIC CHEMISTRY DIVISION COMMISSION ON HIGH TEMPERATURES AND REFRACTORY MATERIALS * MELTING TEMPERATURES OF REFRACTORY OXIDES : PART I , 2006 .

[58]  A. Götte,et al.  Metall , 1897 .

[59]  Future Landscape of Structural Materials in India , 2022 .

[60]  K. Sairam,et al.  ZrB2 based novel composite with NiAl as reinforcement phase , 2018 .

[61]  Yong Huang,et al.  Oxidation Behavior of SiC Platelet‐Reinforced ZrB2 Ceramic Matrix Composites , 2012 .

[62]  W. Marsden I and J , 2012 .

[63]  A. K. Suri,et al.  Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2 , 2011 .

[64]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[65]  H. Nakajima,et al.  Diffusion in α-Ti and Zr , 2003 .

[66]  E. Fluck,et al.  Periodic table of elements , 1985 .