Short Proofs Using Compact Representations of Algebraic Integers
暂无分享,去创建一个
[1] Arnold Schönhage. Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.
[2] Johannes Buchmann,et al. On the period length of the generalized Lagrange algorithm , 1987 .
[3] Johannes A. Buchmann,et al. Some remarks concerning the complexity of computing class groups of quadratic fields , 1991, J. Complex..
[4] J. Buchmann. On the computation of units and class numbers by a generalization of Lagrange's algorithm , 1987 .
[5] Rainer Zimmert,et al. Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung , 1980 .
[6] H. C. Williams,et al. Short Representation of Quadratic Integers , 1995 .
[7] H. Lenstra,et al. Algorithms in algebraic number theory , 1992, math/9204234.
[8] Johannes A. Buchmann,et al. On Principal Ideal Testing in Algebraic Number Fields , 1987, J. Symb. Comput..
[9] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[10] W. Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers , 1990 .
[11] Johannes Buchmann,et al. On the computation of the class number of an algebraic number field , 1989 .
[12] Johannes Buchmann,et al. On short representations of orders and number fields , 1992 .
[13] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .