Minimization of the k-th eigenvalue of the Dirichlet Laplacian

For every $${k \in \mathbb{N}}$$, we prove the existence of a quasi-open set minimizing the k-th eigenvalue of the Dirichlet Laplacian among all sets of prescribed Lebesgue measure. Moreover, we prove that every minimizer is bounded and has a finite perimeter. The key point is the observation that such quasi-open sets are shape subsolutions for an energy minimizing free boundary problem.

[1]  Dorin Bucur,et al.  Minimization of the third eigenvalue of the Dirichlet Laplacian , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Dorin Bucur,et al.  Uniform Concentration-Compactness for Sobolev Spaces on Variable Domains , 2000 .

[3]  A. Veretennikov A geometric approach to free boundary problems (Graduate Studies in Mathematics 68) , 2009 .

[4]  Dorin Bucur,et al.  Variational Methods in Shape Optimization Problems , 2005, Progress in Nonlinear Differential Equations and Their Applications.

[5]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[6]  Michel Pierre,et al.  Lipschitz continuity of state functions in some optimal shaping , 2005 .

[7]  L. Caffarelli,et al.  Existence and regularity for a minimum problem with free boundary. , 1981 .

[8]  Giuseppe Buttazzo,et al.  An existence result for a class of shape optimization problems , 1993 .

[9]  D. Bucur Regularity of Optimal Convex Shapes , 2003 .

[10]  L. Caffarelli,et al.  A Geometric Approach to Free Boundary Problems , 2005 .

[11]  彰 五十嵐 N. Dunford and J. T. Schwartz (with the assistance of W. G. Bade and R. G. Bartle): Linear Operators. : Part II. Spectral Theoty. Self Adjoint Operators in Hilbert Space. Interscience. 1963. X+1065+7頁, 16×23.5cm, 14,000円。 , 1964 .

[12]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[13]  G. Reuter LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .

[14]  F. Smithies Linear Operators , 2019, Nature.

[15]  Dario Mazzoleni,et al.  Existence of minimizers for spectral problems , 2011 .