Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts.

As of February 2003, bacteria that form nitrogen-fixing symbiotic associations with legumes have been confirmed in 44 species of 12 genera. Phylogenies of these taxa containing legume symbionts based on the comparative analysis of 16S rDNA sequences show that they are not clustered in one lineage but are distributed in the classes Alphaproteobacteria and Betaproteobacteria, and dispersed over the following nine monophyletic groups, being intermingled with other taxa that do not contain legume symbionts (shown in parentheses below): Group 1, which comprises Rhizobium and Allorhizobium species containing legume symbionts (intermingled with Agrobacterium and Blastobacter species, which are nonsymbionts); Group 2, Sinorhizobium and Ensifer species (with unclassified nonsymbionts); Group 3, Mesorhizobium species (with nonsymbiotic Aminobacter and Pseudaminobacter species); Group 4, Bradyrhizobium species and Blastobacter denitrificans (with nonsymbiotic Agromonas, Nitrobacter, Afipia, and Rhodopseudomonas species); Group 5, 'Methylobacterium nodulans" (with nonsymbiotic Methylobacterium species); Group 6, Azorhizobium species (with nonsymbiotic Xanthobacter and Aquabacter species); Group 7, 'Devosia neptuniae" (with nonsymbiotic Devosia species and unclassified nonsymbionts); Group 8, symbiotic Burkholderia strains (with nonsymbiotic Burkholderia species); and Group 9, Ralstonia taiwanensis (with nonsymbiotic Ralstonia species). For Groups 5, 8, and 9, the present classification, in which 'each monophyletic group comprises one genus wherein legume symbionts and nonsymbionts are intermingled with each other, " is considered to be retained as is because they are clearly separated from other genera at high bootstrap values and have already been sufficiently characterized based on polyphasic taxonomy. As for the remaining six monophyletic groups, on the other hand, there are currently three options for emending their current classification (definitions and circumscriptions) at the generic level: A) the current classification shall be retained as is; B) all the genera within each monophyletic group shall be amalgamated into one single genus in conformity with the results of phylogenetic analysis; or C) each subordinate lineage in each monophyletic group shall be proposed as a genus. It is considered that research and discussions will be continuously conducted for emending the classification of these monophyletic groups based chiefly on Options B and C as preferable candidates.

[1]  P. Oger,et al.  Agrobacterium is a definable genus of the family Rhizobiaceae. , 2003, International journal of systematic and evolutionary microbiology.

[2]  P. de Vos,et al.  Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an opinion. , 2003, International journal of systematic and evolutionary microbiology.

[3]  E. Wang,et al.  Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. , 2002, International journal of systematic and evolutionary microbiology.

[4]  A. Willems,et al.  A New Species of Devosia That Forms a Unique Nitrogen-Fixing Root-Nodule Symbiosis with the Aquatic Legume Neptunia natans (L.f.) Druce , 2002, Applied and Environmental Microbiology.

[5]  J. Young,et al.  What does a bacterial genome sequence represent? Mis-assignment of MAFF 303099 to the genospecies Mesorhizobium loti. , 2002, Microbiology.

[6]  E. Wang,et al.  Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. , 2002, International journal of systematic and evolutionary microbiology.

[7]  A. Willems,et al.  Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. , 2002, International journal of systematic and evolutionary microbiology.

[8]  J. Burdon,et al.  Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium. , 2002, Microbiology.

[9]  A. Squartini,et al.  Rhizobium sullae sp. nov. (formerly 'Rhizobium hedysari'), the root-nodule microsymbiont of Hedysarum coronarium L. , 2002, International journal of systematic and evolutionary microbiology.

[10]  T. Finan Evolving Insights: Symbiosis Islands and Horizontal Gene Transfer , 2002, Journal of bacteriology.

[11]  R. Webby,et al.  Comparative Sequence Analysis of the Symbiosis Island of Mesorhizobium loti Strain R7A , 2002, Journal of bacteriology.

[12]  W. Whitman,et al.  Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. , 2002, International journal of systematic and evolutionary microbiology.

[13]  P. van Berkum,et al.  The Aquatic Budding Bacterium Blastobacter denitrificans Is a Nitrogen-Fixing Symbiont of Aeschynomene indica , 2002, Applied and Environmental Microbiology.

[14]  J A Eisen,et al.  The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58 , 2001, Science.

[15]  B. Goldman,et al.  Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58 , 2001, Science.

[16]  J. Young,et al.  Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. , 2001, International journal of systematic and evolutionary microbiology.

[17]  M Mergeay,et al.  Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. , 2001, International journal of systematic and evolutionary microbiology.

[18]  Ronald W. Davis,et al.  The Composite Genome of the Legume Symbiont Sinorhizobium meliloti , 2001, Science.

[19]  D. Balkwill,et al.  Nitrogen-Fixing Nodules with Ensifer adhaerens Harboring Rhizobium tropici Symbiotic Plasmids , 2001, Applied and Environmental Microbiology.

[20]  P. de Vos,et al.  DNA-DNA hybridization study of Bradyrhizobium strains. , 2001, International journal of systematic and evolutionary microbiology.

[21]  B. Dreyfus,et al.  Nodulation of legumes by members of the β-subclass of Proteobacteria , 2001, Nature.

[22]  L. Paulin,et al.  Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. , 2001, Molecular biology and evolution.

[23]  E. Wang,et al.  Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. , 2001, International journal of systematic and evolutionary microbiology.

[24]  P. Drouin,et al.  Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. , 2001, Microbiology.

[25]  K. Yoshida,et al.  The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. , 2001, Journal of molecular biology.

[26]  H. Hennecke,et al.  Potential Symbiosis-Specific Genes Uncovered by Sequencing a 410-Kilobase DNA Region of the Bradyrhizobium japonicum Chromosome , 2001, Journal of bacteriology.

[27]  Eric Giraud,et al.  Methylotrophic MethylobacteriumBacteria Nodulate and Fix Nitrogen in Symbiosis with Legumes , 2001, Journal of bacteriology.

[28]  J. Fuhrmann,et al.  Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. , 2000, International journal of systematic and evolutionary microbiology.

[29]  M. Häggblom,et al.  Isolation and Characterization of Diverse Halobenzoate-Degrading Denitrifying Bacteria from Soils and Sediments , 2000, Applied and Environmental Microbiology.

[30]  A. Effendi,et al.  Isolation and Characterization of 2,3-Dichloro-1-Propanol-Degrading Rhizobia , 2000, Applied and Environmental Microbiology.

[31]  K. Lindström,et al.  Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. , 2000, International journal of systematic and evolutionary microbiology.

[32]  J. Young,et al.  The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. , 2000, Molecular biology and evolution.

[33]  K. Yoshida,et al.  Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. , 2000, Gene.

[34]  Joanne M. Santini,et al.  A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical Studies , 2000, Applied and Environmental Microbiology.

[35]  A. Willems,et al.  Photosynthetic Bradyrhizobia from Aeschynomene spp. Are Specific to Stem-Nodulated Species and Form a Separate 16S Ribosomal DNA Restriction Fragment Length Polymorphism Group , 1999, Applied and Environmental Microbiology.

[36]  R. Ye,et al.  The Periplasmic Nitrate Reductase inPseudomonas sp. Strain G-179 Catalyzes the First Step of Denitrification , 1999, Journal of bacteriology.

[37]  A. Willems,et al.  Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. , 1999 .

[38]  M. Collins,et al.  Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. , 1998, International journal of systematic bacteriology.

[39]  E. Jumas‐Bilak,et al.  Unconventional Genomic Organization in the Alpha Subgroup of the Proteobacteria , 1998, Journal of bacteriology.

[40]  C. Ronson,et al.  Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Minamisawa,et al.  Slow-growing and oligotrophic soil bacteria phylogenetically close to Bradyrhizobium japonicum , 1998 .

[42]  K. Lindström,et al.  Three Phylogenetic Groups of nodA and nifHGenes in Sinorhizobium and Mesorhizobium Isolates from Leguminous Trees Growing in Africa and Latin America , 1998, Applied and Environmental Microbiology.

[43]  X. Zou,et al.  Characteristics of Plasmids in Rhizobium huakuii , 1997, Current Microbiology.

[44]  W. Chen,et al.  Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. , 1997 .

[45]  L. Forney,et al.  Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria , 1997, Applied and environmental microbiology.

[46]  A. Bairoch,et al.  Molecular basis of symbiosis between Rhizobium and legumes , 1997, Nature.

[47]  J. Peter,et al.  Diversity and phylogeny of rhizobia , 1996 .

[48]  F. Rainey,et al.  16s Ribosomal DNA Sequence Analysis Confirms the Close Relationship between the Genera Xanthobacter, Azorhizobium, and Aquabacter and Reveals a Lack of Phylogenetic Coherence among Xanthobacter Species , 1996 .

[49]  I. Yano,et al.  Transfer of Two Burkholderia and An Alcaligenes Species to Ralstonia Gen. Nov. , 1995, Microbiology and immunology.

[50]  Z. Cui,et al.  Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. , 1995, International journal of systematic bacteriology.

[51]  C. Ronson,et al.  Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  H. Hennecke,et al.  A single rRNA gene region in Bradyrhizobium japonicum , 1995, Journal of bacteriology.

[53]  T. Heulin,et al.  Polyphasic Taxonomy in the Genus Burkholderia Leading to an Emended Description of the Genus and Proposition of Burkholderia vietnamiensis sp. nov. for N2-Fixing Isolates from Rice in Vietnam , 1995 .

[54]  M. Collins,et al.  Polyphasic Taxonomy of Rhizobia: Emendation of the Genus Sinorhizobium and Description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. , 1994 .

[55]  P. Hugenholtz,et al.  A phylogenetic analysis of the genus Blastobacter with a view to its future reclassification , 1994 .

[56]  H. Sawada,et al.  Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. , 1993, International journal of systematic bacteriology.

[57]  M. Collins,et al.  Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. , 1993, International journal of systematic bacteriology.

[58]  M. Yanagi,et al.  Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. , 1993, FEMS microbiology letters.

[59]  Takayuki Ezaki,et al.  Proposal of Burkholderia gen. nov. and Transfer of Seven Species of the Genus Pseudomonas Homology Group II to the New Genus, with the Type Species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. , 1992, Microbiology and immunology.

[60]  V. Safronova,et al.  Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa. , 1992, FEMS microbiology letters.

[61]  T. Devine,et al.  Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp.nov. , 1992 .

[62]  L. Segovia,et al.  Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum , 1991, Applied and environmental microbiology.

[63]  Ji-Liang Li,et al.  Numerical Taxonomic Study of Fast-Growing Soybean Rhizobia and a Proposal that Rhizobium fredii Be Assigned to Sinorhizobium gen. nov. , 1988 .

[64]  R. Palacios,et al.  Narrow- and Broad-Host-Range Symbiotic Plasmids of Rhizobium spp. Strains That Nodulate Phaseolus vulgaris , 1988, Applied and environmental microbiology.

[65]  F. Sánchez,et al.  Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids , 1987, Journal of bacteriology.

[66]  P. Hirsch,et al.  Blastobacter aggregatus sp.nov., Blastobacter capsulatus sp.nov., and Blastobacter denitrificans sp.nov., new budding bacteria from freshwater habitats , 1985 .

[67]  M. H. Scholla,et al.  Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans , 1984 .

[68]  L. E. Casida Ensifer adhaerens gen. nov., sp. nov.: A Bacterial Predator of Bacteria in Soil† , 1982 .

[69]  G. H. Elkan,et al.  DNA : DNA hybridization studies of Rhizobium japonicum and related Rhizobiaceae , 1981 .

[70]  P. Hooykaas,et al.  Transfer of the Agrobacterium tumefaciens TI Plasmid to Avirulent Agrobacteria and to Rhizobium ex planta , 1977 .

[71]  S. Tabata,et al.  Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[72]  A. Willems,et al.  Phylogenetic and DNA-DNA hybridization analyses of Bradyrhizobium species. , 2001, International journal of systematic and evolutionary microbiology.

[73]  Y. Nakamura,et al.  Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[74]  K. Minamisawa Genetic ecology of soybean bradyrhizobia , 2000 .

[75]  E. Wang,et al.  Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. , 1999, International journal of systematic bacteriology.

[76]  P. van Berkum,et al.  Molecular Evolutionary Systematics of the Rhizobiaceae , 1998 .

[77]  P. de Vos,et al.  Polyphasic Taxonomy , a Consensus Approach to Bacterial Systematics , 1996 .

[78]  A. Yokota,et al.  Transfer of "Pseudomonas riboflavina" (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. , 1996, International journal of systematic bacteriology.

[79]  J. Young,et al.  Phylogeny of fast-growing soybean-nodulating rhizobia support synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. , 1992, International journal of systematic bacteriology.

[80]  S. Orenga,et al.  DNA Homologies among Members of the Genus Azorhizobium and Other Stem- and Root-Nodulating Bacteria Isolated from the , 1991 .

[81]  R. Eady The dinitrogen-fixing bacteria , 1991 .

[82]  R. Palacios,et al.  The Rhizobium Genome , 1990 .

[83]  A. Eaglesham,et al.  The first photosynthetic N2-fixing Rhizobium: characteristics. , 1990 .

[84]  B. Dreyfus,et al.  Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata , 1988 .

[85]  D. C. Jordan NOTES: Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a Genus of Slow-Growing, Root Nodule Bacteria from Leguminous Plants , 1982 .