Comparative analysis of gene regulatory networks: from network reconstruction to evolution.

Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.

[1]  Mehdi M. Kashani,et al.  Large-Scale Genetic Perturbations Reveal Regulatory Networks and an Abundance of Gene-Specific Repressors , 2014, Cell.

[2]  Hongyu Zhao,et al.  Studying the evolution of transcription factor binding events using multi-species ChIP-Seq data , 2013, Statistical applications in genetics and molecular biology.

[3]  Bianca M. Schmitt,et al.  Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals , 2015, Genome research.

[4]  Jacek Majewski,et al.  The study of eQTL variations by RNA-seq: from SNPs to phenotypes. , 2011, Trends in genetics : TIG.

[5]  Tamer Kahveci,et al.  Accessed Terms of Use , 2022 .

[6]  John D. Storey,et al.  Genetic interactions between polymorphisms that affect gene expression in yeast , 2005, Nature.

[7]  V. Iyer,et al.  FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. , 2007, Genome research.

[8]  E. Koonin Orthologs, Paralogs, and Evolutionary Genomics 1 , 2005 .

[9]  Ewan Birney,et al.  An effective model for natural selection in promoters. , 2010, Genome research.

[10]  Robert Patro,et al.  Global network alignment using multiscale spectral signatures , 2012, Bioinform..

[11]  Mathieu Blanchette,et al.  PhyME: A probabilistic algorithm for finding motifs in sets of orthologous sequences , 2004, BMC Bioinformatics.

[12]  Ziv Bar-Joseph,et al.  Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering , 2010, Genome Biology.

[13]  Xin He,et al.  Alignment and Prediction of cis-Regulatory Modules Based on a Probabilistic Model of Evolution , 2009, PLoS Comput. Biol..

[14]  Masaki E. Tsuda,et al.  Evolution of Gene Regulatory Networks by Fluctuating Selection and Intrinsic Constraints , 2010, PLoS Comput. Biol..

[15]  Z. Weng,et al.  Functional analysis of transcription factor binding sites in human promoters , 2012, Genome Biology.

[16]  Elhanan Borenstein,et al.  Conservation of trans-acting circuitry during mammalian regulatory evolution , 2014, Nature.

[17]  Weiqing Wang,et al.  Perturbation Biology: Inferring Signaling Networks in Cellular Systems , 2013, PLoS Comput. Biol..

[18]  Antal F. Novak,et al.  networks Græmlin : General and robust alignment of multiple large interaction data , 2006 .

[19]  Towfique Raj,et al.  Genetics of human gene expression. , 2013, Current opinion in genetics & development.

[20]  Michael B. Eisen,et al.  Divergence of Transcription Factor Binding in Drosophila Embryos with Highly Conserved Gene Expression Permalink , 2013 .

[21]  Eugene V Koonin,et al.  Evolutionary significance of gene expression divergence. , 2005, Gene.

[22]  S. Teichmann,et al.  Gene regulatory network growth by duplication , 2004, Nature Genetics.

[23]  Roded Sharan,et al.  Fast and Accurate Alignment of Multiple Protein Networks , 2009, J. Comput. Biol..

[24]  T. Ideker,et al.  Integrative approaches for finding modular structure in biological networks , 2013, Nature Reviews Genetics.

[25]  Nir Friedman,et al.  A functional selection model explains evolutionary robustness despite plasticity in regulatory networks , 2012 .

[26]  G. Churchill,et al.  Variation in gene expression within and among natural populations , 2002, Nature Genetics.

[27]  Michael D. Wilson,et al.  Waves of Retrotransposon Expansion Remodel Genome Organization and CTCF Binding in Multiple Mammalian Lineages , 2012, Cell.

[28]  Mark Gerstein,et al.  Divergence of transcription factor binding sites across related yeast species. , 2007, Science.

[29]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[30]  Jeroen Raes,et al.  Duplication and divergence: the evolution of new genes and old ideas. , 2004, Annual review of genetics.

[31]  Jaime Huerta-Cepas,et al.  Comparative transcriptomics of early dipteran development , 2013, BMC Genomics.

[32]  André Nantel,et al.  Evolutionary Tinkering with Conserved Components of a Transcriptional Regulatory Network , 2010, PLoS biology.

[33]  Manolis Kellis,et al.  Evolutionary principles of modular gene regulation in yeasts , 2013, eLife.

[34]  Dan Xie,et al.  Comparative Epigenomic Annotation of Regulatory DNA , 2012, Cell.

[35]  Magnus Rattray,et al.  Reconstruction of ancestral protein interaction networks for the bZIP transcription factors , 2007, Proceedings of the National Academy of Sciences.

[36]  S. Keleş,et al.  A Phylogenetic Mixture Model for the Evolution of Gene Expression , 2009, Molecular biology and evolution.

[37]  Nir Friedman,et al.  Physical Module Networks: an integrative approach for reconstructing transcription regulation , 2011, Bioinform..

[38]  H. Stefánsson,et al.  Genetics of gene expression and its effect on disease , 2008, Nature.

[39]  Luca Freschi,et al.  Functional Divergence and Evolutionary Turnover in Mammalian Phosphoproteomes , 2014, PLoS genetics.

[40]  C. Ponting,et al.  No gene in the genome makes sense except in the light of evolution. , 2014, Annual review of genomics and human genetics.

[41]  T. C. White,et al.  Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution , 2014, PLoS genetics.

[42]  Lior Pachter,et al.  Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species , 2010, PLoS biology.

[43]  Peter F. Stadler,et al.  Measuring Transcription Factor–Binding Site Turnover: A Maximum Likelihood Approach Using Phylogenies , 2009, Genome biology and evolution.

[44]  Frank Grützner,et al.  The evolution of lncRNA repertoires and expression patterns in tetrapods , 2014, Nature.

[45]  David Haussler,et al.  Combining Phylogenetic and Hidden Markov Models in Biosequence Analysis , 2004, J. Comput. Biol..

[46]  D. Odom,et al.  Evolution of transcription factor binding in metazoans — mechanisms and functional implications , 2014, Nature Reviews Genetics.

[47]  Roded Sharan,et al.  PathBLAST: a tool for alignment of protein interaction networks , 2004, Nucleic Acids Res..

[48]  Zachary D. Smith,et al.  Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses , 2009 .

[49]  T. Hughes,et al.  Prediction and Testing of Novel Transcriptional Networks Regulating Embryonic Stem Cell Self-renewal and Commitment , 2022 .

[50]  J. Zeitlinger,et al.  A computational pipeline for comparative ChIP-seq analyses , 2011, Nature Protocols.

[51]  L. Almasy,et al.  Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes , 2007, Nature Genetics.

[52]  Aviv Regev,et al.  Transcriptional Regulatory Circuits: Predicting Numbers from Alphabets , 2009, Science.

[53]  Corey Nislow,et al.  Evolution of Nucleosome Occupancy: Conservation of Global Properties and Divergence of Gene-Specific Patterns , 2011, Molecular and Cellular Biology.

[54]  Bonnie Berger,et al.  IsoRankN: spectral methods for global alignment of multiple protein networks , 2009, Bioinform..

[55]  Yulia Mostovoy,et al.  Inferring Evolutionary Histories of Pathway Regulation from Transcriptional Profiling Data , 2013, PLoS Comput. Biol..

[56]  M. Lynch The evolution of genetic networks by non-adaptive processes , 2007, Nature Reviews Genetics.

[57]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[58]  Moritz Herrmann,et al.  Comparative analysis of metazoan chromatin organization , 2014, Nature.

[59]  R. Shamir,et al.  A global view of the selection forces in the evolution of yeast cis-regulation. , 2004, Genome research.

[60]  Robert Patro,et al.  Parsimonious reconstruction of network evolution , 2011, Algorithms for Molecular Biology.

[61]  D. Koller,et al.  Conservation and divergence in the transcriptional programs of the human and mouse immune systems , 2013, Proceedings of the National Academy of Sciences.

[62]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[63]  G. Crawford,et al.  DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. , 2010, Cold Spring Harbor protocols.

[64]  Rob Jelier,et al.  Predicting phenotypic variation in yeast from individual genome sequences , 2011, Nature Genetics.

[65]  Enrique Blanco,et al.  Transcription Factor Map Alignment of Promoter Regions , 2006, PLoS Comput. Biol..

[66]  Richard Bonneau,et al.  A Validated Regulatory Network for Th17 Cell Specification , 2012, Cell.

[67]  Roded Sharan,et al.  Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  I. Yanai,et al.  Identifying functional links between genes by evolutionary transcriptomics. , 2012, Molecular bioSystems.

[69]  Michael D. Wilson,et al.  Five-Vertebrate ChIP-seq Reveals the Evolutionary Dynamics of Transcription Factor Binding , 2010, Science.

[70]  P. Wittkopp,et al.  Variable gene expression in eukaryotes: a network perspective , 2007, Journal of Experimental Biology.

[71]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[72]  Y. Gilad,et al.  Comparative studies of gene expression and the evolution of gene regulation , 2012, Nature Reviews Genetics.

[73]  I. Yanai,et al.  Incongruent expression profiles between human and mouse orthologous genes suggest widespread neutral evolution of transcription control. , 2004, Omics : a journal of integrative biology.

[74]  A. Clark,et al.  Regulatory changes underlying expression differences within and between Drosophila species , 2008, Nature Genetics.

[75]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[76]  Eric S. Lander,et al.  The genomic substrate for adaptive radiation in African cichlid fish , 2014, Nature.

[77]  Enrique Blanco,et al.  ReLA, a local alignment search tool for the identification of distal and proximal gene regulatory regions and their conserved transcription factor binding sites , 2012, Bioinform..

[78]  T. Hashimshony,et al.  A genomic bias for genotype–environment interactions in C. elegans , 2012, Molecular systems biology.

[79]  Saurabh Sinha,et al.  Evolution of Regulatory Sequences in 12 Drosophila Species , 2009, PLoS genetics.

[80]  Manolis Kellis,et al.  Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments , 2013, Nucleic acids research.

[81]  Daphne Koller,et al.  Genome-wide discovery of transcriptional modules from DNA sequence and gene expression , 2003, ISMB.

[82]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[83]  Jie Peng,et al.  Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape , 2014, Proceedings of the National Academy of Sciences.

[84]  Martin Vingron,et al.  Simultaneous alignment and annotation of cis-regulatory regions , 2007, Bioinform..

[85]  Stephen B. Montgomery,et al.  Cis and Trans Effects of Human Genomic Variants on Gene Expression , 2014, PLoS genetics.

[86]  N. Friedman,et al.  Densely Interconnected Transcriptional Circuits Control Cell States in Human Hematopoiesis , 2011, Cell.

[87]  Laura E. DeMare,et al.  The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb , 2013, Cell.

[88]  Charles Boone,et al.  Identifying transcription factor functions and targets by phenotypic activation , 2006, Proceedings of the National Academy of Sciences.

[89]  L. Liang,et al.  A genome-wide association study of global gene expression , 2007, Nature Genetics.

[90]  M. Lynch,et al.  The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans , 2005, Nature Genetics.

[91]  Rainer Spang,et al.  Inferring cellular networks – a review , 2007, BMC Bioinformatics.

[92]  Richard Bonneau,et al.  Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks , 2013, Bioinform..

[93]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[94]  S. Nuzhdin,et al.  Cis and trans regulatory effects contribute to natural variation in transcriptome of Drosophila melanogaster. , 2007, Molecular biology and evolution.

[95]  Matthew W. Hahn,et al.  The evolution of transcriptional regulation in eukaryotes. , 2003, Molecular biology and evolution.

[96]  P. Park ChIP–seq: advantages and challenges of a maturing technology , 2009, Nature Reviews Genetics.

[97]  Albert J. Vilella,et al.  A high-resolution map of human evolutionary constraint using 29 mammals , 2011, Nature.

[98]  Knut Reinert,et al.  LocalAli: an evolutionary-based local alignment approach to identify functionally conserved modules in multiple networks , 2015, Bioinform..

[99]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[100]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[101]  S. Emmott,et al.  Defining an essential transcription factor program for naïve pluripotency , 2014, Science.

[102]  Riet De Smet,et al.  Advantages and limitations of current network inference methods , 2010, Nature Reviews Microbiology.

[103]  Xiuwei Zhang,et al.  Refining Regulatory Networks through Phylogenetic Transfer of Information , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[104]  Dan Xie,et al.  Cross-species de novo identification of cis-regulatory modules with GibbsModule: application to gene regulation in embryonic stem cells. , 2008, Genome research.

[105]  Richard Bonneau Learning biological networks: from modules to dynamics. , 2008, Nature chemical biology.

[106]  Timothy R Hughes,et al.  Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. , 2010, Trends in genetics : TIG.

[107]  Dave T. Gerrard,et al.  Gene expression divergence recapitulates the developmental hourglass model , 2010, Nature.

[108]  Aviv Regev,et al.  The Role of Nucleosome Positioning in the Evolution of Gene Regulation , 2010, PLoS biology.

[109]  Xiaohui Xie,et al.  Identifying novel constrained elements by exploiting biased substitution patterns , 2009, Bioinform..

[110]  Jon D. McAuliffe,et al.  Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome , 2003, Science.

[111]  Leonid Peshkin,et al.  Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. , 2011, Developmental cell.

[112]  C. Burge,et al.  Evolutionary Dynamics of Gene and Isoform Regulation in Mammalian Tissues , 2012, Science.

[113]  Jingyuan Fu,et al.  Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans , 2006, PLoS genetics.

[114]  Rachel B. Brem,et al.  The landscape of genetic complexity across 5,700 gene expression traits in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[115]  N. Barkai,et al.  A genetic signature of interspecies variations in gene expression , 2006, Nature Genetics.

[116]  Martha L. Bulyk,et al.  UniPROBE: an online database of protein binding microarray data on protein–DNA interactions , 2008, Nucleic Acids Res..

[117]  James Taylor,et al.  Genomic approaches towards finding cis-regulatory modules in animals , 2012, Nature Reviews Genetics.

[118]  S. Pongor,et al.  The quest for orthologs: finding the corresponding gene across genomes. , 2008, Trends in genetics : TIG.

[119]  M. Westphall,et al.  Quantification of Mitochondrial Acetylation Dynamics Highlights Prominent Sites of Metabolic Regulation* , 2013, The Journal of Biological Chemistry.

[120]  S. Pääbo,et al.  A Neutral Model of Transcriptome Evolution , 2004, PLoS biology.

[121]  Geppino Falco,et al.  Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. , 2009, Cell stem cell.

[122]  Manolis Kellis,et al.  Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells , 2014, Science.

[123]  Daniel J. Kvitek,et al.  Variations in Stress Sensitivity and Genomic Expression in Diverse S. cerevisiae Isolates , 2008, PLoS genetics.

[124]  Xiuwei Zhang,et al.  Boosting the Performance of Inference Algorithms for Transcriptional Regulatory Networks Using a Phylogenetic Approach , 2008, WABI.

[125]  Genomics: The puzzling side of the human genome , 2004, Nature Reviews Genetics.

[126]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[127]  Henrik Kaessmann,et al.  Evolutionary dynamics of coding and non-coding transcriptomes , 2014, Nature Reviews Genetics.

[128]  S. Bergmann,et al.  The evolution of gene expression levels in mammalian organs , 2011, Nature.

[129]  Wei Niu,et al.  Construction and Analysis of an Integrated Regulatory Network Derived from High-Throughput Sequencing Data , 2011, PLoS Comput. Biol..

[130]  T. Mackay,et al.  Quantitative genetic analyses of complex behaviours in Drosophila , 2004, Nature Reviews Genetics.

[131]  David J. Arenillas,et al.  JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles , 2013, Nucleic Acids Res..

[132]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[133]  G. Wray The evolutionary significance of cis-regulatory mutations , 2007, Nature Reviews Genetics.

[134]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[135]  Jos Boekhorst,et al.  Comparative phosphoproteomics reveals evolutionary and functional conservation of phosphorylation across eukaryotes , 2008, Genome Biology.

[136]  John D. Storey,et al.  Mapping the Genetic Architecture of Gene Expression in Human Liver , 2008, PLoS biology.

[137]  Alan M. Moses,et al.  Conservation and Evolution of Cis-Regulatory Systems in Ascomycete Fungi , 2004, PLoS biology.

[138]  Debra Goldberg,et al.  Reverse Engineering the Evolution of Protein Interaction Networks , 2008, Pacific Symposium on Biocomputing.

[139]  Jacob F. Degner,et al.  Sequence and Chromatin Accessibility Data Accurate Inference of Transcription Factor Binding from Dna Material Supplemental Open Access , 2022 .

[140]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[141]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[142]  G. Stormo,et al.  Determining the specificity of protein–DNA interactions , 2010, Nature Reviews Genetics.

[143]  Richard Bonneau,et al.  Multi-species integrative biclustering , 2010, Genome Biology.

[144]  Michael Lachmann,et al.  Evolution of primate gene expression , 2006, Nature Reviews Genetics.

[145]  R. Doerge,et al.  Global eQTL Mapping Reveals the Complex Genetic Architecture of Transcript-Level Variation in Arabidopsis , 2007, Genetics.

[146]  Jugal K. Kalita,et al.  A comparison of algorithms for the pairwise alignment of biological networks , 2014, Bioinform..

[147]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[148]  Jonathan K. Pritchard,et al.  Primate Transcript and Protein Expression Levels Evolve Under Compensatory Selection Pressures , 2013, Science.

[149]  Balaji S. Srinivasan,et al.  The evolution of genetic regulatory systems in bacteria , 2004, Nature Reviews Genetics.

[150]  Manolis Kellis,et al.  Arboretum: Reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules , 2013, Genome research.

[151]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[152]  Alla Lapidus,et al.  Comparative genomics of xylose-fermenting fungi for enhanced biofuel production , 2011, Proceedings of the National Academy of Sciences.

[153]  S. Bergmann,et al.  Similarities and Differences in Genome-Wide Expression Data of Six Organisms , 2003, PLoS biology.

[154]  Chun Jimmie Ye,et al.  Intersection of population variation and autoimmunity genetics in human T cell activation , 2014, Science.

[155]  L. Kruglyak,et al.  Genetics of global gene expression , 2006, Nature Reviews Genetics.

[156]  T. Bailey Discovering sequence motifs. , 2008, Methods in molecular biology.

[157]  Alexander J. Hartemink,et al.  Finding regulatory DNA motifs using alignment-free evolutionary conservation information , 2010, Nucleic acids research.

[158]  J. Zeitlinger,et al.  High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species , 2011, Nature Genetics.

[159]  N. Barkai,et al.  Comparative analysis indicates regulatory neofunctionalization of yeast duplicates , 2007, Genome Biology.

[160]  M. Tomita,et al.  Large-Scale Comparative Phosphoproteomics Identifies Conserved Phosphorylation Sites in Plants1[W][OA] , 2010, Plant Physiology.

[161]  Christopher R. Baker,et al.  Protein Modularity, Cooperative Binding, and Hybrid Regulatory States Underlie Transcriptional Network Diversification , 2012, Cell.

[162]  Erik van Nimwegen,et al.  PhyloGibbs: A Gibbs Sampling Motif Finder That Incorporates Phylogeny , 2005, PLoS Comput. Biol..

[163]  Hongyu Zhao,et al.  Regulatory variation within and between species. , 2011, Annual review of genomics and human genetics.

[164]  D. Haussler,et al.  Article Identification and Characterization of Multi-Species Conserved Sequences , 2022 .

[165]  B. De Moor,et al.  COMODO: an adaptive coclustering strategy to identify conserved coexpression modules between organisms , 2010, Nucleic acids research.

[166]  D. Koller,et al.  Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals , 2013, Genome research.

[167]  D. Thompson,et al.  From elements to modules: regulatory evolution in Ascomycota fungi. , 2009, Current opinion in genetics & development.

[168]  Alvis Brazma,et al.  Pol Iii Binding in Six Mammalian Genomes Shows High Conservation among Amino Acid Isotypes, despite Divergence in Trna Gene Usage Ukpmc Funders Group Author Manuscript Introduction , 2022 .

[169]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.

[170]  Alex A. Pollen,et al.  The genomic basis of adaptive evolution in threespine sticklebacks , 2012, Nature.

[171]  Michael D. Wilson,et al.  Cooperativity and Rapid Evolution of Cobound Transcription Factors in Closely Related Mammals , 2013, Cell.

[172]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[173]  M. Bulyk Computational prediction of transcription-factor binding site locations , 2003, Genome Biology.

[174]  David A. Knowles,et al.  Transcriptome Sequencing of a Large Human Family Identifies the Impact of Rare Noncoding Variants , 2014, American journal of human genetics.

[175]  A. Stark,et al.  Deciphering the transcriptional cis-regulatory code. , 2013, Trends in genetics : TIG.

[176]  Manolis Kellis,et al.  Evidence of Abundant Purifying Selection in Humans for Recently Acquired Regulatory Functions , 2012, Science.

[177]  Aviv Regev,et al.  Fungal regulatory evolution: cis and trans in the balance , 2009, FEBS letters.

[178]  Fidencio J. Neri,et al.  Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution , 2014, Science.

[179]  Itai Yanai,et al.  Comparison of diverse developmental transcriptomes reveals that coexpression of gene neighbors is not evolutionarily conserved. , 2009, Genome research.

[180]  J. T. Erichsen,et al.  Enhancer Evolution across 20 Mammalian Species , 2015, Cell.

[181]  Eric E. Schadt,et al.  Systematic Detection of Polygenic cis-Regulatory Evolution , 2011, PLoS genetics.

[182]  Michael D. Wilson,et al.  Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways , 2014, eLife.

[183]  Manolis Kellis,et al.  The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication , 2008, Proceedings of the National Academy of Sciences.

[184]  Md. Abul Hassan Samee,et al.  Simulations of Enhancer Evolution Provide Mechanistic Insights into Gene Regulation , 2013, Molecular biology and evolution.

[185]  Xin He,et al.  Towards an Evolutionary Model of Transcription Networks , 2011, PLoS Comput. Biol..

[186]  S. Ohno Evolution by Gene Duplication , 1971 .

[187]  Teresa M. Przytycka,et al.  Chapter 5: Network Biology Approach to Complex Diseases , 2012, PLoS Comput. Biol..

[188]  Bonnie Berger,et al.  Global alignment of multiple protein interaction networks with application to functional orthology detection , 2008, Proceedings of the National Academy of Sciences.

[189]  D. Pe’er,et al.  Principles and Strategies for Developing Network Models in Cancer , 2011, Cell.

[190]  J. Hoheisel Microarray technology: beyond transcript profiling and genotype analysis , 2006, Nature Reviews Microbiology.

[191]  M. Blanchette,et al.  Discovery of regulatory elements by a computational method for phylogenetic footprinting. , 2002, Genome research.

[192]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[193]  Alex P. Reynolds,et al.  Genome-scale mapping of DNase I hypersensitivity. , 2013, Current protocols in molecular biology.

[194]  Nir Friedman,et al.  Learning Module Networks , 2002, J. Mach. Learn. Res..

[195]  D. Church,et al.  Cross-species sequence comparisons: a review of methods and available resources. , 2003, Genome research.

[196]  Hao Li,et al.  Evolution of Transcription Networks — Lessons from Yeasts , 2010, Current Biology.

[197]  A. Butte,et al.  Leveraging models of cell regulation and GWAS data in integrative network-based association studies , 2012, Nature Genetics.

[198]  Michael D. Wilson,et al.  The Evolutionary Landscape of Alternative Splicing in Vertebrate Species , 2012, Science.

[199]  Wen-Hsiung Li,et al.  The genetic basis of evolutionary change in gene expression levels , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[200]  Timothy H. Keitt,et al.  Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana , 2014, Molecular biology and evolution.

[201]  Hao Li,et al.  The Evolution of Combinatorial Gene Regulation in Fungi , 2008, PLoS biology.

[202]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[203]  Naama Barkai,et al.  Inferring regulatory mechanisms from patterns of evolutionary divergence , 2011, Molecular systems biology.

[204]  Robert W. Williams,et al.  A new set of BXD recombinant inbred lines from advanced intercross populations in mice , 2004, BMC Genetics.

[205]  Jeremy Schmutz,et al.  Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a Pitx1 Enhancer , 2010, Science.

[206]  Nicola J. Rinaldi,et al.  Transcriptional regulatory code of a eukaryotic genome , 2004, Nature.

[207]  Páll Melsted,et al.  Comparative RNA sequencing reveals substantial genetic variation in endangered primates. , 2012, Genome research.

[208]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[209]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[210]  S. Batzoglou,et al.  Distribution and intensity of constraint in mammalian genomic sequence. , 2005, Genome research.

[211]  A. Regev,et al.  Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[212]  S. Carroll,et al.  Emerging principles of regulatory evolution , 2007, Proceedings of the National Academy of Sciences.

[213]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[214]  Aviv Regev,et al.  Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. , 2011, Genome research.