Spatial fisheries ecology: Recent progress and future prospects

Abstract We review recent progresses made in the study of fish distribution and survival over space — i.e., fisheries spatial ecology. This is achieved by first surveying the most common statistical approaches and relative challenges associated with the analysis of fisheries spatial data, loosely grouped in geostatistical and regression approaches. Then we review a selected number of case-studies implementing the discussed techniques. We conclude by proposing new areas of statistical and ecological research to further our understanding of how fish distribute and survive in space. This review serves a dual purpose by emphasizing the scientific importance of studying spatial interactions to better understand the temporal dynamics of fish abundance, and by promoting the development of new analytical and ecological approaches for the analysis of spatial data. Through our survey we cover different statistical techniques, marine ecosystems and life stages. This analytical, geographic and ontogenetic variety is also purposely selected to highlight the importance of comparative and multidisciplinary studies across diverging ecological disciplines, ecosystems and life stages. Besides having a general ecological relevance this review also bears a more applied significance, owing to the increasing need for protecting renewable marine resources along with their primary habitat.

[1]  Pierre Fréon,et al.  Dynamics of pelagic fish distribution and behaviour : effects on fisheries and stock assessment , 1999 .

[2]  Simon A. Levin,et al.  Multiple Scales and the Maintenance of Biodiversity , 2000, Ecosystems.

[3]  Spatial distribution of sardine (Sardinops sagax) eggs and larvae : an application of geostatistics and resampling to survey data , 1999 .

[4]  R. M. May,et al.  Exploitation of Marine Communities , 1985, Dahlem Workshop Report.

[5]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[6]  B T Grenfell,et al.  Noisy Clockwork: Time Series Analysis of Population Fluctuations in Animals , 2001, Science.

[7]  Friedrich W. Köster,et al.  FISH PRODUCTION AND CLIMATE: SPRAT IN THE BALTIC SEA , 2004 .

[8]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[9]  R. Francis,et al.  The relationship between Pacific hake (Merluccius productus) distribution and poleward subsurface flow in the California Current System , 2006 .

[10]  R. Steneck,et al.  Critical science gaps impede use of no-take fishery reserves. , 2005, Trends in ecology & evolution.

[11]  Pierre Petitgas,et al.  Geostatistics in fisheries survey design and stock assessment: models, variances and applications , 2001 .

[12]  John F. Piatt,et al.  Community reorganization in the Gulf of Alaska following ocean climate regime shift , 1999 .

[13]  Nicolas Bez Global fish abundance estimation from regular sampling: the geostatistical transitive method , 2002 .

[14]  P. Petitgas Biomass-dependent dynamics of fish spatial distributions characterized by geostatistical aggregation curves , 1998 .

[15]  Stefan Neuenfeldt,et al.  Environmentally driven predator-prey overlaps determine the aggregate diet of the cod Gadus morhua in the Baltic Sea , 2006 .

[16]  A. Maccall,et al.  World-wide fluctuations of sardine and anchovy stocks: the regime problem , 1989 .

[17]  S. Wood,et al.  GAMs with integrated model selection using penalized regression splines and applications to environmental modelling , 2002 .

[18]  Nils Chr. Stenseth,et al.  Recruitment of walleye pollock in a physically and biologically complex ecosystem: A new perspective , 2005 .

[19]  R. Macarthur The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur Award Lecture , 2005 .

[20]  W. C. Leggett,et al.  The importance of scale to predator-prey spatial correlations: an example of Atlantic fishes , 1990 .

[21]  R. Francis,et al.  BOUNDARIES OF OPEN MARINE ECOSYSTEMS: AN APPLICATION TO THE PRIBILOF ARCHIPELAGO, SOUTHEAST BERING SEA , 2004 .

[22]  Christopher D. Wilson,et al.  Climate–ocean variability and Pacific hake: A geostatistical modeling approach , 2008 .

[23]  S. Wood Low‐Rank Scale‐Invariant Tensor Product Smooths for Generalized Additive Mixed Models , 2006, Biometrics.

[24]  Laurie J. Bauer,et al.  Winter distribution of blue crab Callinectes sapidus in Chesapeake Bay : application and cross-validation of a two-stage generalized additive model , 2005 .

[25]  S. Wood Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models , 2004 .

[26]  M. Sissenwine Why Do Fish Populations Vary , 1984 .

[27]  Suam Kim,et al.  Walleye pollock recruitment in Shelikof Strait: applied fisheries oceanography , 1996 .

[28]  K. Mann,et al.  Dynamics of marine ecosystems:biological-physical interactions in the oceans , 1992 .

[29]  N. Stenseth,et al.  Density dependence and density independence during the early life stages of four marine fish stocks. , 2007, Ecology.

[30]  David B. Lindenmayer,et al.  MODELING COUNT DATA OF RARE SPECIES: SOME STATISTICAL ISSUES , 2005 .

[31]  A. Adams,et al.  Marine nurseries and effective juvenile habitats: concepts and applications , 2006 .

[32]  N. Cressie,et al.  Robust estimation of the variogram: I , 1980 .

[33]  K. Wieland,et al.  A geostatistical analysis of IBTS data for age 2 North Sea haddock (Melanogrammus aeglefinus) considering daylight effects , 2001 .

[34]  Paul G. Fernandes,et al.  Geostatistics for Estimating Fish Abundance , 2000 .

[35]  Julian Priddle,et al.  Scales of Interaction Between Antarctic Krill and the Environment , 1988 .

[36]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[37]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[38]  M. Fortin,et al.  Spatial pattern and ecological analysis , 1989, Vegetatio.

[39]  D. P. Swain,et al.  Density-Dependent Geographic Distribution of Atlantic Cod (Gadus morhua) in the Southern Gulf of St. Lawrence , 1993 .

[40]  D. P. Swain Changes in the distribution of Atlantic cod (Gadus morhua) in the southern Gulf of St Lawrence — effects of environmental change or change in environmental preferences? , 1999 .

[41]  Kjell Einar Erikstad,et al.  SCALE‐DEPENDENT PREDATOR–PREY INTERACTIONS: THE HIERARCHICAL SPATIAL DISTRIBUTION OF SEABIRDS AND PREY , 2000 .

[42]  S. Levin The problem of pattern and scale in ecology , 1992 .

[43]  N. Stenseth,et al.  Spatial anatomy of species survival: effects of predation and climate-driven environmental variability. , 2007, Ecology.

[44]  S. Wood Thin plate regression splines , 2003 .

[45]  K. Bailey Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change , 2000 .

[46]  J. Castilla,et al.  The management of fisheries and marine ecosystems , 1997 .

[47]  Kung-Sik Chan,et al.  Ecological Effects of Climate Fluctuations , 2002, Science.

[48]  G. Swartzman,et al.  Spatial Analysis of Bering Sea Groundfish Survey Data Using Generalized Additive Models , 1992 .

[49]  M. Stein,et al.  A Bayesian analysis of kriging , 1993 .

[50]  Jessica Gurevitch,et al.  Ecography 25: 601 -- 615, 2002 , 2022 .

[51]  G. Swartzman,et al.  Modelling Spatio-Temporal Effects of Environment on Atlantic Herring, Clupea harengus , 2000, Environmental Biology of Fishes.

[52]  A. Welsh,et al.  Generalized additive modelling and zero inflated count data , 2002 .

[53]  S. Walsh,et al.  Changes in the spatial structure of Grand Bank yellowtail flounder: testing MacCall's basin hypothesis , 2004 .

[54]  João Antônio Lorenzzetti,et al.  Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic , 2004 .

[55]  Fox,et al.  Patterns in the spawning of cod (Gadus morhua L.), sole (Solea solea L.) and plaice (Pleuronectes platessa L.) in the Irish Sea as determined by generalized additive modelling , 2000 .

[56]  O. Loucks,et al.  From Balance of Nature to Hierarchical Patch Dynamics: A Paradigm Shift in Ecology , 1995, The Quarterly Review of Biology.

[57]  E. Simmonds,et al.  Spatial analysis and mapping of acoustic survey data in the presence of high local variability : geostatistical application to North Sea herring (Clupea harengus) , 1996 .

[58]  K. Erikstad,et al.  Scale-dependent predator-prey interactions: the aggregative response of seabirds to prey under variable prey abundance and patchiness , 2002 .

[59]  D. Lindenmayer,et al.  Modelling the abundance of rare species: statistical models for counts with extra zeros , 1996 .

[60]  M. Mangel,et al.  A unified treatment of top-down and bottom-up control of reproduction in populations , 2005 .

[61]  David J. Mulla,et al.  Geostatistical Tools for Modeling and Interpreting Ecological Spatial Dependence , 1992 .

[62]  K. Bailey,et al.  Landscape dynamics and resulting species interactions: the cod-capelin system in the southeastern Bering Sea , 2005 .

[63]  J. Gil,et al.  Hydrographic mesoscale structures and Poleward Current as a determinant of hake (Merluccius merluccius) recruitment in southern Bay of Biscay , 2000 .

[64]  N. B. Kotliar,et al.  Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity , 1990 .

[65]  J. Pinnegar,et al.  Spatial and temporal structure of predator–prey relationships in the Celtic Sea fish community , 2005 .

[66]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[67]  Peter Kareiva,et al.  Population dynamics in spatial habitats , 1997 .

[68]  Yuedong Wang Smoothing Spline Models with Correlated Random Errors , 1998 .

[69]  D. Schneider,et al.  Potential contact statistics for measuring scale-dependent spatial pattern and association: an example of northern cod (Gadus morhua) and capelin (Mallotus villosus) , 2000 .

[70]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[71]  A. Genin Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies , 2004 .

[72]  Trevor Hastie,et al.  Generalized linear and generalized additive models in studies of species distributions: setting the scene , 2002 .

[73]  N. Stenseth,et al.  Phenological and geographical patterns of walleye pollock (Theragra chalcogramma) spawning in the western Gulf of Alaska , 2007 .

[74]  D. H. Cushing,et al.  Plankton Production and Year-class Strength in Fish Populations: an Update of the Match/Mismatch Hypothesis , 1990 .

[75]  J. Lee,et al.  Metabolic ontogeny of teleost fishes , 1996 .

[76]  J. Robin,et al.  Spatio-temporal analysis of commercial trawler data using General Additive models: patterns of Loliginid squid abundance in the north-east Atlantic , 2002 .

[77]  C. Bishop,et al.  Distribution changes and abundance of northern cod (Gadus morhua), 1981-1993. , 1997 .

[78]  J. Reynolds,et al.  Climate Change and Distribution Shifts in Marine Fishes , 2005, Science.

[79]  Gunnar Stefánsson,et al.  Statistical evaluation and modelling of the stomach contents of Icelandic cod (Gadus morhua) , 1997 .

[80]  P. Kareiva Population dynamics in spatially complex environments: theory and data , 1990 .

[81]  W G Warren Changes in the within-survey spatio-temporal structure of the northern cod (Gadus morhua) population, 19851992 , 1997 .

[82]  S. Sogard Size-selective mortality in the juvenile stage of teleost fishes : A review , 1997 .

[83]  P. Wiebe,et al.  Patterns and Processes in the Time-Space Scales of Plankton Distributions , 1978 .

[84]  M. Turner Landscape ecology in North America: past, present, and future , 2005 .

[85]  G. Rose,et al.  Using geostatistics to quantify seasonal distribution and aggregation patterns of fishes: an example of Atlantic cod (Gadus morhua) , 2005 .

[86]  J. R. Wallis,et al.  An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .

[87]  S. Kupschus Development and evaluation of statistical habitat suitability models: an example based on juvenile spotted seatrout Cynoscion nebulosus , 2003 .

[88]  Simon F. Thrush,et al.  Marine reserves : Parks, baselines, and fishery enhancement , 2000 .

[89]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[90]  K. S. Chan,et al.  Cod and climate: effect of the North Atlantic Oscillation on recruitment in the North Atlantic , 2006 .

[91]  Kung-Sik Chan,et al.  NONADDITIVE EFFECTS OF THE ENVIRONMENT ON THE SURVIVAL OF A LARGE MARINE FISH POPULATION , 2004 .

[92]  J. Wiens Spatial Scaling in Ecology , 1989 .

[93]  D. Sahrhage,et al.  Antarctic Ocean and Resources Variability , 1988, Springer Berlin Heidelberg.