Matrix Poincaré, Φ-Sobolev inequalities, and quantum ensembles
暂无分享,去创建一个
[1] R. Bhatia. Matrix Analysis , 1996 .
[2] S. Beigi,et al. Hypercontractivity and the logarithmic Sobolev inequality for the completely bounded norm , 2015, 1509.02610.
[3] Ronald de Wolf,et al. A Hypercontractive Inequality for Matrix-Valued Functions with Applications to Quantum Computing and LDCs , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[4] Christopher King. Hypercontractivity for Semigroups of Unital Qubit Channels , 2012 .
[5] L. Gross. Existence and uniqueness of physical ground states , 1972 .
[6] Daniel Stilck França,et al. Sandwiched Rényi Convergence for Quantum Evolutions , 2016, 1607.00041.
[7] Leonard Gross,et al. Chapter Two. Hypercontractivity, Logarithmic Sobolev Inequalities, and Applications: A Survey of Surveys , 2006 .
[8] Marco Tomamichel,et al. Exponential Decay of Matrix $Φ$-Entropies on Markov Semigroups with Applications to Dynamical Evolutions of Quantum Ensembles , 2015, ArXiv.
[9] B. Zegarliński,et al. Hypercontractivity in Noncommutative LpSpaces , 1999 .
[10] Leonard Gross. Logarithmic sobolev inequalities — A survey , 1978 .
[11] L. Gross. Logarithmic Sobolev inequalities and contractivity properties of semigroups , 1993 .
[12] A. Bonami. Étude des coefficients de Fourier des fonctions de $L^p(G)$ , 1970 .
[13] P. Federbush. Partially Alternate Derivation of a Result of Nelson , 1969 .
[14] Igal Sason,et al. Concentration of Measure Inequalities in Information Theory, Communications, and Coding , 2012, Found. Trends Commun. Inf. Theory.
[15] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[16] R. Carbone,et al. Hypercontractivity for a quantum Ornstein–Uhlenbeck semigroup , 2007 .
[17] Nathan Srebro,et al. Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.
[18] S. Bobkov. SOME EXTREMAL PROPERTIES OF THE BERNOULLI DISTRIBUTION , 1997 .
[19] M. Ledoux. On Talagrand's deviation inequalities for product measures , 1997 .
[20] Massimiliano Pontil,et al. Convex multi-task feature learning , 2008, Machine Learning.
[21] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..
[22] Joel A. Tropp,et al. Subadditivity of Matrix phi-Entropy and Concentration of Random Matrices , 2013, ArXiv.
[23] Nathan Linial,et al. The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[24] Raffaella Carbone,et al. Logarithmic Sobolev inequalities in non-commutative algebras , 2015 .
[25] P. Diaconis,et al. LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .
[26] Maxim Raginsky,et al. Logarithmic Sobolev inequalities and strong data processing theorems for discrete channels , 2013, 2013 IEEE International Symposium on Information Theory.
[27] B. Zegarliński,et al. Monotone norms and Finsler structures in noncommutative spaces , 2014 .
[28] W. Beckner. Inequalities in Fourier analysis , 1975 .
[29] B. Zegarliński,et al. Log-Sobolev inequalities for infinite one dimensional lattice systems , 1990 .
[30] Ashley Montanaro,et al. Quantum boolean functions , 2008, Chic. J. Theor. Comput. Sci..
[31] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[32] J. Schur. Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. , 1911 .
[33] Ping-Cheng Yeh,et al. The learnability of unknown quantum measurements , 2015, Quantum Inf. Comput..
[34] Free Hypercontractivity , 1997 .
[35] B. Zegarliński,et al. Linear and Nonlinear Dissipative Dynamics , 2016 .
[36] K. Temme,et al. Quantum logarithmic Sobolev inequalities and rapid mixing , 2012, 1207.3261.
[37] Raffaella Carbone. OPTIMAL LOG-SOBOLEV INEQUALITY AND HYPERCONTRACTIVITY FOR POSITIVE SEMIGROUPS ON $M_2({\mathbb C})$ , 2004 .
[38] Boguslaw Zegarlinski,et al. HYPERCONTRACTIVITY VIA SPECTRAL THEORY , 2000 .
[39] V. V. Peller,et al. Hankel operators in the perturbation theory of unitary and self-adjoint operators , 1985 .
[40] R. Latala,et al. Between Sobolev and Poincaré , 2000, math/0003043.
[41] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .
[42] D. Petz,et al. Families of completely positive maps associated with monotone metrics , 2012, 1212.1337.
[43] Freeman J. Dyson,et al. The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .
[44] J. Tropp,et al. Efron–Stein inequalities for random matrices , 2014, 1408.3470.
[45] Alice Guionnet,et al. Lectures on Logarithmic Sobolev Inequalities , 2003 .
[46] T. Cubitt,et al. Quantum reverse hypercontractivity , 2015, 1504.06143.
[47] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[48] C. Tebaldi,et al. Option pricing with Correlation Risk , 2007 .
[49] Damir Filipović,et al. Affine Processes on Positive Semidefinite Matrices , 2009, 0910.0137.
[50] Kelly Bickel,et al. Differentiating Matrix Functions , 2011, 1104.0336.
[51] A. Montanaro. Some applications of hypercontractive inequalities in quantum information theory , 2012, 1208.0161.
[52] Pierre Bernard,et al. Lectures on probability theory , 1994 .
[53] Eric Carlen,et al. Optimal hypercontractivity for fermi fields and related non-commutative integration inequalities , 1992, hep-th/9209053.
[54] Maxim Raginsky,et al. Strong Data Processing Inequalities and $\Phi $ -Sobolev Inequalities for Discrete Channels , 2014, IEEE Transactions on Information Theory.
[55] Daniel Stilck França,et al. Relative Entropy Convergence for Depolarizing Channels , 2015, 1508.07021.
[56] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[57] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[58] Michael M. Wolf,et al. Entropy Production of Doubly Stochastic Quantum Channels , 2015 .
[59] F. Verstraete,et al. The χ2-divergence and mixing times of quantum Markov processes , 2010, 1005.2358.
[60] K. Atkinson,et al. Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .
[61] B. Simon,et al. Hypercontractive semigroups and two dimensional self-coupled Bose fields , 1972 .
[62] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[63] Douglas Farenick,et al. Jensen's inequality relative to matrix-valued measures , 2007 .
[64] T. Tao. Topics in Random Matrix Theory , 2012 .
[65] Min-Hsiu Hsieh,et al. Characterizations of matrix and operator-valued Φ-entropies, and operator Efron–Stein inequalities , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.