Tutorial and Selected Approaches on Parameter Learning in Bayesian Network with Incomplete Data

Bayesian networks (BN) are used in a big range of applications but they have one issue concerning parameter learning. In real application, training data are always incomplete or some nodes are hidden. To deal with this problem many learning parameter algorithms are suggested foreground EM, Gibbs sampling and RBE algorithms. This paper presents a tutorial of basic concepts and in particular techniques and algorithms associated with learning in Bayesian network with incomplete data. We present also selected applications in the fields.

[1]  Yang Xiang,et al.  Multiply sectioned Bayesian networks for neuromuscular diagnosis , 1993, Artif. Intell. Medicine.

[2]  Paola Sebastiani,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. Robust Learning with Missing Data , 2022 .

[3]  Nir Friedman,et al.  The Bayesian Structural EM Algorithm , 1998, UAI.

[4]  Qiang Ji,et al.  Learning Bayesian network parameters under incomplete data with domain knowledge , 2009, Pattern Recognit..

[5]  Qiang Ji,et al.  Exploiting qualitative domain knowledge for learning Bayesian network parameters with incomplete data , 2008, 2008 19th International Conference on Pattern Recognition.

[6]  Sung-Bae Cho,et al.  Online Learning of Bayesian Network Parameters with Incomplete Data , 2006, ICIC.

[7]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[8]  Mohamed Ali Mahjoub,et al.  The threshold EM algorithm for parameter learning in bayesian network with incomplete data , 2012, ArXiv.

[9]  Liu Hui,et al.  Study of the Case of Learning Bayesian Network from Complete Data , 2009, 2009 Second International Symposium on Knowledge Acquisition and Modeling.

[10]  Cao Yonghui Study of the Case of Learning Bayesian Network from Incomplete Data , 2009, 2009 International Conference on Information Management, Innovation Management and Industrial Engineering.

[11]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[12]  A. J. Feelders,et al.  Parameter Learning for Bayesian Networks with Strict Qualitative Influences , 2007, IDA.

[13]  S. Lauritzen The EM algorithm for graphical association models with missing data , 1995 .

[14]  Mohamed Ali Mahjoub,et al.  Software Comparison Dealing with Bayesian Networks , 2011, ISNN.

[15]  Tom M. Mitchell,et al.  A Theoretical Framework for Learning Bayesian Networks with Parameter Inequality Constraints , 2007, IJCAI.

[16]  Linda C. van der Gaag,et al.  Learning Bayesian network parameters under order constraints , 2006, Int. J. Approx. Reason..

[17]  A. J. Feelders A new parameter Learning Method for Bayesian Networks with Qualitative Influences , 2007, UAI.

[18]  Anthony Jameson,et al.  Exploiting Qualitative Knowledge in the Learning of Conditional Probabilities of Bayesian Networks , 2000, UAI.

[19]  Qiang Ji,et al.  Improving Bayesian Network parameter learning using constraints , 2008, 2008 19th International Conference on Pattern Recognition.

[20]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[21]  Nir Friedman,et al.  The Information Bottleneck EM Algorithm , 2002, UAI.

[22]  Linda C. van der Gaag,et al.  Learning Bayesian Network Parameters with Prior Knowledge about Context-Specific Qualitative Influences , 2005, UAI.

[23]  Tom M. Mitchell,et al.  Bayesian Network Learning with Parameter Constraints , 2006, J. Mach. Learn. Res..

[24]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Manfred Jaeger The AI&M Procedure for Learning from Incomplete Data , 2006, UAI.

[26]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .