Multiple mechanisms link prestimulus neural oscillations to sensory responses

Spontaneous fluctuations of neural activity may explain why sensory responses vary across repeated presentations of the same physical stimulus. To test this hypothesis, we recorded electroencephalography in humans during stimulation with identical visual stimuli and analyzed how prestimulus neural oscillations modulate different stages of sensory processing reflected by distinct components of the event-related potential (ERP). We found that strong prestimulus alpha- and beta-band power resulted in a suppression of early ERP components (C1 and N150) and in an amplification of late components (after 0.4 s), even after controlling for fluctuations in 1/f aperiodic signal and sleepiness. Whereas functional inhibition of sensory processing underlies the reduction of early ERP responses, we found that the modulation of non-zero-mean oscillations (baseline shift) accounted for the amplification of late responses. Distinguishing between these two mechanisms is crucial for understanding how internal brain states modulate the processing of incoming sensory information.

[1]  G. Hakerem,et al.  The effect of prestimulus alpha activity on the P300. , 1988, Psychophysiology.

[2]  Haim Sompolinsky,et al.  Chaos and synchrony in a model of a hypercolumn in visual cortex , 1996, Journal of Computational Neuroscience.

[3]  A. Nobre,et al.  Oscillatory Brain State Predicts Variability in Working Memory , 2014, The Journal of Neuroscience.

[4]  Simon Hanslmayr,et al.  The best of both worlds: phase-reset of human EEG alpha activity and additive power contribute to ERP generation. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[5]  C. Rennie,et al.  Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness. , 1998, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[6]  R. Barry,et al.  EEG alpha activity and the ERP to target stimuli in an auditory oddball paradigm. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[7]  W. El-Deredy,et al.  Pre-stimulus alpha oscillations over somatosensory cortex predict tactile misperceptions , 2017, Neuropsychologia.

[8]  Viktor K. Jirsa,et al.  Relating Alpha Power and Phase to Population Firing and Hemodynamic Activity Using a Thalamo-cortical Neural Mass Model , 2015, PLoS Comput. Biol..

[9]  Antigona Martínez,et al.  Source analysis of event-related cortical activity during visuo-spatial attention. , 2003, Cerebral cortex.

[10]  Ankoor S. Shah,et al.  Neural dynamics and the fundamental mechanisms of event-related brain potentials. , 2004, Cerebral cortex.

[11]  W. Klimesch,et al.  Alpha phase synchronization predicts P1 and N1 latency and amplitude size. , 2005, Cerebral cortex.

[12]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[13]  M. Wallace,et al.  Dysfunction of sensory oscillations in Autism Spectrum Disorder , 2016, Neuroscience & Biobehavioral Reviews.

[14]  J. Gross,et al.  Trial‐by‐trial co‐variation of pre‐stimulus EEG alpha power and visuospatial bias reflects a mixture of stochastic and deterministic effects , 2017, The European journal of neuroscience.

[15]  Gabriel Curio,et al.  Non-zero mean and asymmetry of neuronal oscillations have different implications for evoked responses , 2010, Clinical Neurophysiology.

[16]  V. Jousmäki,et al.  Modulation of Human Cortical Rolandic Rhythms during Natural Sensorimotor Tasks , 1997, NeuroImage.

[17]  Josep Marco-Pallarés,et al.  Modulation of spectral power and of phase resetting of EEG contributes differentially to the generation of auditory event-related potentials , 2006, NeuroImage.

[18]  S. Hillyard,et al.  Identification of early visual evoked potential generators by retinotopic and topographic analyses , 1994 .

[19]  J. Lange,et al.  Prestimulus Alpha Power Influences Tactile Temporal Perceptual Discrimination and Confidence in Decisions. , 2016, Cerebral cortex.

[20]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[21]  G Pfurtscheller,et al.  Discrimination between phase-locked and non-phase-locked event-related EEG activity. , 1995, Electroencephalography and clinical neurophysiology.

[22]  D. Javitt,et al.  Global dynamics of selective attention and its lapses in primary auditory cortex , 2016, Nature Neuroscience.

[23]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[24]  Michelle M. McCarthy,et al.  Striatal origin of the pathologic beta oscillations in Parkinson's disease , 2011, Proceedings of the National Academy of Sciences.

[25]  Bradley R. Postle,et al.  Decoding and Reconstructing the Focus of Spatial Attention from the Topography of Alpha-band Oscillations , 2016, Journal of Cognitive Neuroscience.

[26]  Robert T. Knight,et al.  Parameterizing neural power spectra , 2018, bioRxiv.

[27]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[28]  Raja Parasuraman,et al.  Prestimulus Oscillations in the Alpha Band of the EEG Are Modulated by the Difficulty of Feature Discrimination and Predict Activation of a Sensory Discrimination Process , 2014, Journal of Cognitive Neuroscience.

[29]  Yan Zhang,et al.  Detection of a Weak Somatosensory Stimulus: Role of the Prestimulus Mu Rhythm and Its Top–Down Modulation , 2010, Journal of Cognitive Neuroscience.

[30]  T. Åkerstedt,et al.  Validation of the Karolinska sleepiness scale against performance and EEG variables , 2006, Clinical Neurophysiology.

[31]  M. Brandt Visual and auditory evoked phase resetting of the alpha EEG. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[32]  R. Romo,et al.  α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking , 2011, Proceedings of the National Academy of Sciences.

[33]  P. Corballis,et al.  Prestimulus alpha power influences response criterion in a detection task. , 2016, Psychophysiology.

[34]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[35]  Bruce C. Hansen,et al.  On the Differentiation of Foveal and Peripheral Early Visual Evoked Potentials , 2016, Brain Topography.

[36]  F. Perrin,et al.  Spherical splines for scalp potential and current density mapping. , 1989, Electroencephalography and clinical neurophysiology.

[37]  S. Cole,et al.  Brain Oscillations and the Importance of Waveform Shape , 2017, Trends in Cognitive Sciences.

[38]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[39]  Gerwin Schalk,et al.  A general framework for dynamic cortical function: the function-through-biased-oscillations (FBO) hypothesis , 2015, Front. Hum. Neurosci..

[40]  A. Riehle,et al.  The ups and downs of beta oscillations in sensorimotor cortex , 2013, Experimental Neurology.

[41]  Niko A Busch,et al.  Moment-to-Moment Fluctuations in Neuronal Excitability Bias Subjective Perception Rather than Strategic Decision-Making , 2018, eNeuro.

[42]  Gal Chechik,et al.  A unifying principle underlying the extracellular field potential spectral responses in the human cortex. , 2015, Journal of neurophysiology.

[43]  B. MCA. SAVERS,et al.  The Mechanism of Auditory Evoked EEG Responses , 1974, Nature.

[44]  Hannu Tiitinen,et al.  Auditory event-related responses are generated independently of ongoing brain activity , 2005, NeuroImage.

[45]  Diane M. Beck,et al.  To See or Not to See: Prestimulus α Phase Predicts Visual Awareness , 2009, The Journal of Neuroscience.

[46]  Saskia Haegens,et al.  Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re)Activation , 2017, eNeuro.

[47]  J. Lange,et al.  Fluctuations of prestimulus oscillatory power predict subjective perception of tactile simultaneity. , 2012, Cerebral cortex.

[48]  Fetsje Bijma,et al.  A maximum-likelihood estimator for trial-to-trial variations in noisy MEG/EEG data sets , 2004, IEEE Transactions on Biomedical Engineering.

[49]  R. Barry,et al.  EEG differences between eyes-closed and eyes-open resting conditions , 2007, Clinical Neurophysiology.

[50]  Arno Villringer,et al.  Influence of ongoing alpha rhythm on the visual evoked potential , 2008, NeuroImage.

[51]  M Steinschneider,et al.  Localization of ERP generators and identification of underlying neural processes. , 1995, Electroencephalography and clinical neurophysiology. Supplement.

[52]  Lei Ai,et al.  The phase of prestimulus alpha oscillations affects tactile perception. , 2014, Journal of neurophysiology.

[53]  Steven Lemm,et al.  A novel mechanism for evoked responses in the human brain , 2007, The European journal of neuroscience.

[54]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[55]  Non-zero mean of oscillations as a mechanism for the generation of evoked responses Reply to “Amplitude asymmetry as a mechanism for the generation of slow evoked responses” , 2010, Clinical Neurophysiology.

[56]  Thomas Grunwald,et al.  Neural Bases of Cognitive ERPs: More than Phase Reset , 2004, Journal of Cognitive Neuroscience.

[57]  Dominique L. Pritchett,et al.  Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. , 2009, Journal of neurophysiology.

[58]  Maximilien Chaumon,et al.  Prestimulus Neural Oscillations Inhibit Visual Perception via Modulation of Response Gain , 2014, Journal of Cognitive Neuroscience.

[59]  W. Medendorp,et al.  Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses , 2009, Proceedings of the National Academy of Sciences.

[60]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[61]  A. Kleinschmidt,et al.  Modulation of Visually Evoked Cortical fMRI Responses by Phase of Ongoing Occipital Alpha Oscillations , 2011, The Journal of Neuroscience.

[62]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[63]  J. Schoffelen,et al.  Prestimulus Oscillatory Activity in the Alpha Band Predicts Visual Discrimination Ability , 2008, The Journal of Neuroscience.

[64]  J. Wixted,et al.  Signal Detection Measures Cannot Distinguish Perceptual Biases from Response Biases , 2015, Perception.

[65]  Lin Yang,et al.  Perceptual Learning Increases the Strength of the Earliest Signals in Visual Cortex , 2010, The Journal of Neuroscience.

[66]  R. Barry,et al.  Prestimulus delta and theta determinants of ERP responses in the Go/NoGo task. , 2013, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[67]  T. Ergenoğlu,et al.  Alpha rhythm of the EEG modulates visual detection performance in humans. , 2004, Brain research. Cognitive brain research.

[68]  C. Schroeder,et al.  Laminar analysis of bicuculline-induced epileptiform activity in area 17 of the awake macaque , 1990, Brain Research.

[69]  John J. Foxe,et al.  Optimal sustained attention is linked to the spectral content of background EEG activity: greater ongoing tonic alpha (∼10 Hz) power supports successful phasic goal activation , 2007 .

[70]  Juan Chen,et al.  Spatial summation revealed in the earliest visual evoked component C1 and the effect of attention on its linearity. , 2016, Journal of neurophysiology.

[71]  John J. Foxe,et al.  Spatial attention modulates initial afferent activity in human primary visual cortex. , 2008, Cerebral cortex.

[72]  E. Basar,et al.  Important associations among EEG-dynamics, event-related potentials, short-term memory and learning. , 1985, The International journal of neuroscience.

[73]  O. Jensen,et al.  Posterior α activity is not phase-reset by visual stimuli , 2006 .

[74]  Sébastien M. Crouzet,et al.  Spontaneous Neural Oscillations Bias Perception by Modulating Baseline Excitability. , 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  B. Postle,et al.  Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy , 2016, Consciousness and Cognition.

[76]  C. Moore,et al.  The rate of transient beta frequency events predicts behavior across tasks and species , 2017, eLife.

[77]  Aysenil Belger,et al.  Aperiodic Neural Activity is a Better Predictor of Schizophrenia than Neural Oscillations , 2017, bioRxiv.

[78]  Mingzhou Ding,et al.  From Prestimulus Alpha Oscillation to Visual-evoked Response: An Inverted-U Function and Its Attentional Modulation , 2011, Journal of Cognitive Neuroscience.

[79]  A. Villringer,et al.  How Ongoing Neuronal Oscillations Account for Evoked fMRI Variability , 2011, The Journal of Neuroscience.

[80]  K. Linkenkaer-Hansen,et al.  Prestimulus Oscillations Enhance Psychophysical Performance in Humans , 2004, The Journal of Neuroscience.

[81]  O. Jensen,et al.  Rhythmic Pulsing: Linking Ongoing Brain Activity with Evoked Responses , 2010, Front. Hum. Neurosci..

[82]  M. Brandt,et al.  Pre-stimulus spectral EEG patterns and the visual evoked response. , 1991, Electroencephalography and clinical neurophysiology.

[83]  Maarten A. S. Boksem,et al.  Effects of mental fatigue on attention: an ERP study. , 2005, Brain research. Cognitive brain research.

[84]  Matthias M. Müller,et al.  Alpha-Band Brain Oscillations Shape the Processing of Perceptible as well as Imperceptible Somatosensory Stimuli during Selective Attention , 2017, The Journal of Neuroscience.

[85]  Gregor Thut,et al.  Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance , 2017, eNeuro.

[86]  W. Klimesch,et al.  EEG alpha oscillations: The inhibition–timing hypothesis , 2007, Brain Research Reviews.

[87]  Diane M. Beck,et al.  Pulsed Out of Awareness: EEG Alpha Oscillations Represent a Pulsed-Inhibition of Ongoing Cortical Processing , 2011, Front. Psychology.

[88]  S. Bressler,et al.  Trial-to-trial variability of cortical evoked responses: implications for the analysis of functional connectivity , 2002, Clinical Neurophysiology.

[89]  M. Kraut,et al.  Intracortical generators of the flash VEP in monkeys. , 1985, Electroencephalography and clinical neurophysiology.

[90]  Dorothy V. M. Bishop,et al.  Journal of Neuroscience Methods , 2015 .

[91]  Stephen D. Mayhew,et al.  Spontaneous EEG alpha oscillation interacts with positive and negative BOLD responses in the visual–auditory cortices and default-mode network , 2013, NeuroImage.

[92]  M. Brandt,et al.  The relationship between prestimulus-alpha amplitude and visual evoked potential amplitude. , 1991, The International journal of neuroscience.

[93]  C C Wood,et al.  Retinotopic organization of human visual cortex: departures from the classical model. , 1996, Cerebral cortex.

[94]  Olivia Gosseries,et al.  Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex , 2016, The Journal of Neuroscience.

[95]  W. Klimesch,et al.  Are event-related potential components generated by phase resetting of brain oscillations? A critical discussion , 2007, Neuroscience.

[96]  Adam Gazzaley,et al.  Age-Related Changes in 1/f Neural Electrophysiological Noise , 2015, The Journal of Neuroscience.

[97]  Zhe Qu,et al.  Earliest stages of visual cortical processing are not modified by attentional load , 2014, Human brain mapping.

[98]  M. Morgan,et al.  Linking hypotheses underlying Class A and Class B methods , 2013, Visual Neuroscience.

[99]  O. Jensen,et al.  Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition , 2010, Front. Hum. Neurosci..

[100]  Nick F. Ramsey,et al.  Frequency specific spatial interactions in human electrocorticography: V1 alpha oscillations reflect surround suppression , 2013, NeuroImage.

[101]  O. Jensen,et al.  Asymmetric Amplitude Modulations of Brain Oscillations Generate Slow Evoked Responses , 2008, The Journal of Neuroscience.

[102]  Annabelle Blangero,et al.  Exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials , 2013, Journal of neural engineering.

[103]  Mark S. Cohen,et al.  Simultaneous EEG and fMRI of the alpha rhythm , 2002, Neuroreport.

[104]  M. A. Goodale,et al.  What is the best fixation target? The effect of target shape on stability of fixational eye movements , 2013, Vision Research.

[105]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[106]  M. Brandt,et al.  The effect of the phase of prestimulus alpha activity on the averaged visual evoked response. , 1991, Electroencephalography and clinical neurophysiology.

[107]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[108]  Karen S. Abraham,et al.  Posterior EEG alpha at rest and during task performance: Comparison of current source density and field potential measures. , 2015, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[109]  Fetsje Bijma,et al.  A mathematical approach to the temporal stationarity of background noise in MEG/EEG measurements , 2003, NeuroImage.

[110]  D. Leopold,et al.  Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex , 2012, Current Biology.

[111]  C. Schroeder,et al.  Striate cortical contribution to the surface-recorded pattern-reversal vep in the alert monkey , 1991, Vision Research.

[112]  E. Basar,et al.  Enhancement of visual evoked potentials by stimulation during low prestimulus EEG stages. , 1993, The International journal of neuroscience.

[113]  Brendon O. Watson,et al.  Temporal coupling of field potentials and action potentials in the neocortex , 2017, bioRxiv.

[114]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.

[115]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[116]  Klaus Linkenkaer-Hansen,et al.  Somatosensory evoked magnetic fields: relation to pre-stimulus mu rhythm , 2000, Clinical Neurophysiology.

[117]  B. Balas,et al.  Personal Familiarity Influences the Processing of Upright and Inverted Faces in Infants , 2009, Front. Hum. Neurosci..

[118]  Gabriel Curio,et al.  Role of neuronal synchrony in the generation of evoked EEG/MEG responses. , 2010, Journal of neurophysiology.

[119]  Simon Hanslmayr,et al.  Alpha phase reset contributes to the generation of ERPs. , 2006, Cerebral cortex.

[120]  Manuel Schabus,et al.  Phase-locked alpha and theta oscillations generate the P1-N1 complex and are related to memory performance. , 2004, Brain research. Cognitive brain research.

[121]  T. Teyler,et al.  Habituation and the human evoked potential. , 1979, Journal of comparative and physiological psychology.

[122]  Gregor Thut,et al.  Frequency and power of human alpha oscillations drift systematically with time-on-task , 2018, NeuroImage.

[123]  Raja Parasuraman,et al.  Dissociation of visual C1 and P1 components as a function of attentional load: An event-related potential study , 2010, Biological Psychology.