Learning-based identification and iterative learning control of direct-drive robots

A combination of model-based and iterative learning control (ILC) is proposed as a method to achieve high-quality motion control of direct-drive robots in repetitive motion tasks. We include both model-based and learning components in the total control law, as their individual properties influence the performance of motion control. The model-based part of the controller compensates much of the nonlinear and coupled robot dynamics. A new procedure for estimating the parameters of the rigid body model, implemented in this part of the controller, is used. This procedure is based on a batch-adaptive control algorithm that estimates the model parameters online. Information about the dynamics not covered by the rigid body model, due to flexibilities, is acquired experimentally, by identification. The models of the flexibilities are used in the design of the iterative learning controllers for the individual joints. Use of the models facilitates quantitative prediction of performance improvement via ILC. The effectiveness of the combination of the model-based and the iterative learning controllers is demonstrated in experiments on a spatial serial direct-drive robot with revolute joints.

[1]  Suguru Arimoto,et al.  Realization of robot motion based on a learning method , 1988, IEEE Trans. Syst. Man Cybern..

[2]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[3]  Michael J. Grimble,et al.  Iterative Learning Control for Deterministic Systems , 1992 .

[4]  B. de Jager,et al.  RRR-robot design: basic outlines, servo sizing, and control , 1997 .

[5]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[6]  M. Steinbuch,et al.  Control design for robust performance of a direct-drive robot , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[7]  Suguru Arimoto,et al.  Control Theory of Nonlinear Mechanical Systems , 1996 .

[8]  Koichi Osuka,et al.  Base parameters of manipulator dynamic models , 1990, IEEE Trans. Robotics Autom..

[9]  M Maarten Steinbuch,et al.  Online identification of a robot using batch adaptive control , 2003 .

[10]  M. Vukobratovic,et al.  Dynamics of Manipulation Robots: Theory and Application , 1982 .

[11]  C. S. G. Lee,et al.  Robotics: Control, Sensing, Vision, and Intelligence , 1987 .

[12]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[13]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .

[14]  Maarten Steinbuch,et al.  Modeling and identification for high-performance robot control: an RRR-robotic arm case study , 2004, IEEE Transactions on Control Systems Technology.

[15]  Maarten Steinbuch,et al.  Frequency domain iterative learning control for direct-drive robots , 2003, 2003 European Control Conference (ECC).

[16]  Toshiharu Sugie,et al.  Iterative learning control for robot manipulators using the finite dimensional input subspace , 2002, IEEE Trans. Robotics Autom..

[17]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[18]  Alessandro De Luca,et al.  A frequency-domain approach to learning control: implementation for a robot manipulator , 1989, Proceedings. IEEE International Symposium on Intelligent Control 1989.

[19]  Kevin L. Moore,et al.  Iterative Learning Control: An Expository Overview , 1999 .

[20]  Dragan Kostic,et al.  Illustrating man-machine motion analogy in robotics - The handwriting problem , 2003 .

[21]  Suguru Arimoto,et al.  Bettering operation of Robots by learning , 1984, J. Field Robotics.

[22]  Svante Gunnarsson,et al.  Experimental comparison of some classical iterative learning control algorithms , 2002, IEEE Trans. Robotics Autom..

[23]  Spyros G. Tzafestas,et al.  The handwriting problem [man-machine motion analogy in robotics] , 2003, IEEE Robotics Autom. Mag..

[24]  Henrik Gordon Petersen,et al.  A new method for estimating parameters of a dynamic robot model , 2001, IEEE Trans. Robotics Autom..

[25]  Laura E. Ray,et al.  Adaptive friction compensation using extended Kalman–Bucy filter friction estimation , 2001 .

[26]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[27]  Veljko Potkonjak,et al.  Dynamics of Manipulation Robots , 1982 .

[28]  Masayoshi Tomizuka,et al.  Zero Phase Error Tracking Algorithm for Digital Control , 1987 .

[29]  Krzysztof Kozłowski,et al.  Modelling and Identification in Robotics , 1998 .

[30]  M Maarten Steinbuch,et al.  Time-frequency analysis of a motion system with learning control , 2003, Proceedings of the 2003 American Control Conference, 2003..