Construction of Z-scheme Cu 2 O/Cu/AgBr/Ag photocatalyst with enhanced photocatalytic activity and stability under visible light

[1]  Z. Ding,et al.  Photocatalytic CO2 reduction promoted by a CuCo2O4 cocatalyst with homogeneous and heterogeneous light harvesters , 2016 .

[2]  D. Lu,et al.  Modification of Wide-Band-Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visible-Light Water Oxidation. , 2016, Angewandte Chemie.

[3]  Weichao Wang,et al.  Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu 2 O microspheres for degrading organic pollutants , 2016 .

[4]  Sibo Wang,et al.  Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction. , 2016, Angewandte Chemie.

[5]  Xinchen Wang,et al.  Multifunctional Metal-Organic Frameworks for Photocatalysis. , 2015, Small.

[6]  Hong Liu,et al.  3D Bi2MoO6 Nanosheet/TiO2 Nanobelt Heterostructure: Enhanced Photocatalytic Activities and Photoelectochemistry Performance , 2015 .

[7]  Hongchang Yao,et al.  Enhanced Photoreduction CO₂ Activity over Direct Z-Scheme α-Fe₂O₃/Cu₂O Heterostructures under Visible Light Irradiation. , 2015, ACS applied materials & interfaces.

[8]  Xitian Zhang,et al.  One-dimensional Ag3PO4/TiO2 heterostructure with enhanced photocatalytic activity for the degradation of 4-nitrophenol , 2015 .

[9]  Ying-hua Liang,et al.  Plasmon-enhanced photocatalytic properties of nano Ag@AgBr on single-crystalline octahedral Cu 2 O (1 1 1) microcrystals composite photocatalyst , 2015 .

[10]  D. Wei,et al.  Fabrication of a heterostructured Ag/AgCl/Bi2MoO6 plasmonic photocatalyst with efficient visible light activity towards dyes , 2015 .

[11]  Yong Zhou,et al.  State‐of‐the‐Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance , 2015 .

[12]  Xinchen Wang,et al.  A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. , 2015, Chemical communications.

[13]  Sibo Wang,et al.  Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework , 2015 .

[14]  M. Jaroniec,et al.  All‐Solid‐State Z‐Scheme Photocatalytic Systems , 2014, Advanced materials.

[15]  Lun Jin,et al.  Highly efficient Ag₂O/Bi₂O₂CO₃ p-n heterojunction photocatalysts with improved visible-light responsive activity. , 2014, ACS applied materials & interfaces.

[16]  J. Qu,et al.  Characterization and photostability of Cu2O–Ag–AgBr/Al2O3 for the degradation of toxic pollutants with visible-light irradiation , 2014 .

[17]  Sibo Wang,et al.  Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. , 2014, Physical chemistry chemical physics : PCCP.

[18]  Xinchen Wang,et al.  Cobalt imidazolate metal-organic frameworks photosplit CO(2) under mild reaction conditions. , 2014, Angewandte Chemie.

[19]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[20]  Fabrication of Ag/Cu2O composite films with a facile method and their photocatalytic activity , 2013 .

[21]  G. Jung,et al.  3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting. , 2013, ACS nano.

[22]  Z. Mi,et al.  One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures. , 2013, ACS nano.

[23]  Y. Paz,et al.  On the similarity and dissimilarity between photocatalytic water splitting and photocatalytic degradation of pollutants. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  S. Linic,et al.  Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State , 2013, Science.

[25]  A. Xu,et al.  Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light. , 2013, Nanoscale.

[26]  C. Sow,et al.  Plasmon-enhanced photocatalytic properties of Cu2O nanowire-Au nanoparticle assemblies. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[27]  Shutao Wang,et al.  Synthesis of Ag@AgBr/AgCl heterostructured nanocashews with enhanced photocatalytic performance via anion exchange , 2012 .

[28]  R. Varma,et al.  Inside-out core-shell architecture: controllable fabrication of Cu2O@Cu with high activity for the Sonogashira coupling reaction. , 2012, Chemical communications.

[29]  Xie Quan,et al.  TiO2 nanotube/Ag–AgBr three-component nanojunction for efficient photoconversion , 2011 .

[30]  Jiaguo Yu,et al.  H2WO4·H2O/Ag/AgCl Composite Nanoplates: A Plasmonic Z-Scheme Visible-Light Photocatalyst , 2011 .

[31]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[32]  Mingshan Zhu,et al.  Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. , 2011, ACS nano.

[33]  N. Umezawa,et al.  Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties. , 2011, Journal of the American Chemical Society.

[34]  Mark P. Stoykovich,et al.  Solvent-Dependent Surface Plasmon Response and Oxidation of Copper Nanocrystals , 2011 .

[35]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[36]  S. Luo,et al.  High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. , 2010, Environmental science & technology.

[37]  Ying Zhang,et al.  Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity , 2010 .

[38]  J. Qu,et al.  Plasmon-Assisted Degradation of Toxic Pollutants with Ag-AgBr/Al2O3 under Visible-Light Irradiation , 2010 .

[39]  Xiaoyan Qin,et al.  Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. , 2010, Chemistry.

[40]  M. Ouyang,et al.  Visible-light Energy Storage by Ti3+ in TiO2/Cu2O Bilayer Film , 2009 .

[41]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[42]  Ying Dai,et al.  Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. , 2009, Chemistry.

[43]  Hao Yu,et al.  Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion , 2009 .

[44]  Y. Konishi,et al.  Efficient Complete Oxidation of Acetaldehyde into CO2 over CuBi2O4/WO3 Composite Photocatalyst under Visible and UV Light Irradiation , 2007 .

[45]  Zhe Yuan,et al.  Plasmonic properties of supported Pt and Pd nanostructures. , 2006, Nano letters.

[46]  Lin-Wang Wang,et al.  Colloidal nanocrystal heterostructures with linear and branched topology , 2004, Nature.

[47]  O. Yamashita Effect of metal electrode on Seebeck coefficient of p- and n-type Si thermoelectrics , 2004 .

[48]  Marta I. Litter,et al.  Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems , 1999 .

[49]  Noriyoshi Kakuta,et al.  Silver Bromide as a Photocatalyst for Hydrogen Generation from CH3OH/H2O Solution , 1999 .