Application of Support Vector Regression for Modeling Low Flow Time Series

[1]  Ozgur Kisi,et al.  New formulation for forecasting streamflow: evolutionary polynomial regression vs. extreme learning machine , 2018 .

[2]  Abbas Parsaie,et al.  Applications of soft computing techniques for prediction of energy dissipation on stepped spillways , 2016, Neural Computing and Applications.

[3]  Abbas Parsaie,et al.  Investigation of trap efficiency of retention dams , 2018 .

[4]  Mohammad Najafzadeh,et al.  GMDH-GEP to predict free span expansion rates below pipelines under waves , 2018 .

[5]  A. Parsaie,et al.  Prediction of Energy Dissipation of Flow Over Stepped Spillways Using Data-Driven Models , 2018 .

[6]  Mohammad Najafzadeh,et al.  Prediction of riprap stone size under overtopping flow using data-driven models , 2018 .

[7]  Abbas Parsaie,et al.  Water quality prediction using machine learning methods , 2018 .

[8]  Mohammad Najafzadeh,et al.  Optimized expressions to evaluate the flow discharge in main channels and floodplains using evolutionary computing and model classification , 2018 .

[9]  Abbas Parsaie,et al.  Improving Modelling of Discharge Coefficient of Triangular Labyrinth Lateral Weirs Using SVM, GMDH and MARS Techniques , 2017 .

[10]  Abbas Parsaie,et al.  Hydrochemical evaluation of river water quality—a case study , 2017, Applied Water Science.

[11]  Mohammad Najafzadeh,et al.  NF-GMDH-Based self-organized systems to predict bridge pier scour depth under debris flow effects , 2017 .

[12]  Pijush Samui,et al.  Forecasting Evaporative Loss by Least-Square Support-Vector Regression and Evaluation with Genetic Programming, Gaussian Process, and Minimax Probability Machine Regression: Case Study of Brisbane City , 2017 .

[13]  Abbas Parsaie,et al.  Computational  Modeling of Pollution Transmission in Rivers , 2017, Applied Water Science.

[14]  A. Parsaie,et al.  Prediction of flow discharge in compound open channels using adaptive neuro fuzzy inference system method , 2017 .

[15]  A. Parsaie,et al.  Mathematical expression of discharge capacity of compound open channels using MARS technique , 2017, Journal of Earth System Science.

[16]  Amir Hamzeh Haghiabi,et al.  Modeling River Mixing Mechanism Using Data Driven Model , 2017, Water Resources Management.

[17]  A. Parsaie,et al.  Physical and numerical modeling of performance of detention dams , 2017 .

[18]  Abbas Parsaie,et al.  Prediction of head loss on cascade weir using ANN and SVM , 2017 .

[19]  Kuk-Hyun Ahn,et al.  Use of a nonstationary copula to predict future bivariate low flow frequency in the Connecticut river basin , 2016 .

[20]  Abbas Parsaie,et al.  Prediction of side weir discharge coefficient by support vector machine technique , 2016 .

[21]  R. Deo,et al.  Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models , 2016, Stochastic Environmental Research and Risk Assessment.

[22]  A. Haghiabi,et al.  Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines , 2016, Journal of Earth System Science.

[23]  Jaya Kandasamy,et al.  Prediction of hydrological time-series using extreme learning machine , 2016 .

[24]  R. Deo,et al.  An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland , 2016, Environmental Monitoring and Assessment.

[25]  Ravinesh C. Deo,et al.  Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia , 2015 .

[26]  Umut Okkan,et al.  Bayesian Learning and Relevance Vector Machines Approach for Downscaling of Monthly Precipitation , 2015 .

[27]  Yu Lei,et al.  Prediction of length-of-day using extreme learning machine , 2015 .

[28]  Chandranath Chatterjee,et al.  Regional Flood Frequency Analysis using Soft Computing Techniques , 2015, Water Resources Management.

[29]  Sungwon Kim,et al.  Multistep-ahead flood forecasting using wavelet and data-driven methods , 2015, KSCE Journal of Civil Engineering.

[30]  B. K. Panigrahi,et al.  Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine , 2014, Climate Dynamics.

[31]  Paresh Chandra Deka,et al.  Support vector machine applications in the field of hydrology: A review , 2014, Appl. Soft Comput..

[32]  H. Azamathulla,et al.  Group method of data handling to predict scour depth around bridge piers , 2013, Neural Computing and Applications.

[33]  Jan Adamowski,et al.  Urban water demand forecasting and uncertainty assessment using ensemble wavelet‐bootstrap‐neural network models , 2013 .

[34]  Arjen Ysbert Hoekstra,et al.  Identification of appropriate lags and temporal resolutions for low flow indicators in the River Rhine to forecast low flows with different lead times , 2013 .

[35]  Jean-Philippe Vidal,et al.  Low Flows in France and their relationship to large scale climate indices , 2013 .

[36]  J. Abbot,et al.  Application of artificial neural networks to rainfall forecasting in Queensland, Australia , 2012, Advances in Atmospheric Sciences.

[37]  Amir Hossein Alavi,et al.  Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing , 2011 .

[38]  O. Kisi,et al.  Application of Artificial Intelligence to Estimate Daily Pan Evaporation Using Available and Estimated Climatic Data in the Khozestan Province (South Western Iran) , 2011 .

[39]  Kwok-Wing Chau,et al.  Data-driven models for monthly streamflow time series prediction , 2010, Eng. Appl. Artif. Intell..

[40]  Jagadeesh Anmala,et al.  Rainfall-Runoff Modeling Using Artificial Neural Networks , 2010 .

[41]  Chuntian Cheng,et al.  A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series , 2009 .

[42]  Wang Tao,et al.  Application of Artificial Neural Networks to Forecasting Ice Conditions of the Yellow River in the Inner Mongolia Reach , 2008 .

[43]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[44]  Vijay P. Singh,et al.  Critical appraisal of methods for the assessment of environmental flows and their application in two river systems of India , 2008 .

[45]  C. Sivapragasam,et al.  Genetic programming approach for flood routing in natural channels , 2008 .

[46]  Dawei Han,et al.  Flood forecasting using support vector machines , 2007 .

[47]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[48]  I-Fan Chang,et al.  Support vector regression for real-time flood stage forecasting , 2006 .

[49]  Chuntian Cheng,et al.  Using support vector machines for long-term discharge prediction , 2006 .

[50]  MohammadSajjad Khan,et al.  Application of Support Vector Machine in Lake Water Level Prediction , 2006 .

[51]  Nitin Muttil,et al.  Discharge Rating Curve Extension – A New Approach , 2005 .

[52]  Chuntian Cheng,et al.  Long-Term Prediction of Discharges in Manwan Hydropower Using Adaptive-Network-Based Fuzzy Inference Systems Models , 2005, ICNC.

[53]  Stefano Alvisi,et al.  Water level forecasting through fuzzy logic and artificial neural network approaches , 2005 .

[54]  G. Blöschl,et al.  Low flow estimates from short stream flow records—a comparison of methods , 2005 .

[55]  K. P. Sudheer,et al.  Explaining the internal behaviour of artificial neural network river flow models , 2004 .

[56]  Juan B. Valdés,et al.  NONLINEAR MODEL FOR DROUGHT FORECASTING BASED ON A CONJUNCTION OF WAVELET TRANSFORMS AND NEURAL NETWORKS , 2003 .

[57]  A. Soldati,et al.  Artificial neural network approach to flood forecasting in the River Arno , 2003 .

[58]  A. Ramachandra Rao,et al.  Linearity analysis on stationary segments of hydrologic time series , 2003 .

[59]  K. P. Sudheer,et al.  A data‐driven algorithm for constructing artificial neural network rainfall‐runoff models , 2002 .

[60]  T. McMahon,et al.  Stochastic generation of annual, monthly and daily climate data: A review , 2001 .

[61]  E. Toth,et al.  Comparison of short-term rainfall prediction models for real-time flood forecasting , 2000 .

[62]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[63]  Federico Girosi,et al.  Support Vector Machines: Training and Applications , 1997 .

[64]  Gunnar Rätsch,et al.  Predicting Time Series with Support Vector Machines , 1997, ICANN.

[65]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[66]  Peter Freeman,et al.  Application of artificial intelligence , 1988, SOEN.

[67]  J. Dracup,et al.  On the definition of droughts , 1980 .

[68]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[69]  Mohammad Najafzadeh,et al.  Scour prediction in long contractions using ANFIS and SVM , 2016 .

[70]  Zahraie Banafsheh,et al.  SEASONAL METEOROLOGICAL DROUGHT PREDICTION USING SUPPORT VECTOR MACHINE , 2012 .

[71]  Anteneh Meshesha Belayneh,et al.  Standard Precipitation Index Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Support Vector Regression , 2012, Appl. Comput. Intell. Soft Comput..

[72]  Vladimir U. Smakhtin,et al.  A review of methods of hydrological estimation at ungauged sites in India , 2008 .

[73]  D. Basak,et al.  Support Vector Regression , 2008 .

[74]  Radko Mesiar,et al.  Comparison of forecasting performance of nonlinear models of hydrological time series , 2006 .

[75]  Marcella Cannarozzo,et al.  Multi-year drought frequency analysis at multiple sites by operational hydrology - A comparison of methods , 2006 .

[76]  P. C. Nayak,et al.  A neuro-fuzzy computing technique for modeling hydrological time series , 2004 .

[77]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[78]  David J. C. MacKay,et al.  Bayesian Methods for Backpropagation Networks , 1996 .

[79]  K. Hipel,et al.  Time series modelling of water resources and environmental systems , 1994 .

[80]  G. Czapar,et al.  [Water quality]. , 1992, Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie.