Thermal Emissivity : Basics, Measurement, and Biological Examples

Measurement of thermal emissivity is of interest in a number of disciplines: Astronomy, climate science, meteorology, geology, biology, engineering, and so on, and a number of methods have been developed for different purposes and situations.

[1]  H. T. Hammel Infrared Emissivities of Some Arctic Fauna , 1956 .

[2]  N. Harrick Study of Physics and Chemistry of Surfaces from Frustrated Total Internal Reflections , 1960 .

[3]  R. Hering,et al.  Surface radiation properties from electromagnetic theory , 1968 .

[4]  D. Phinney,et al.  Ecological variations in thermal infrared emissivity of vegetation , 1980 .

[5]  R. G. Best,et al.  Infrared Emissivity and Radiant Surface Temperatures of Canada and Snow Geese , 1981 .

[6]  R. Bowker The infrared reflectivity of the desert lizards Cnemidophorus velox and Sceloporus undulatus , 1985 .

[7]  D. Arasteh,et al.  A correlation between normal and hemispherical emissivity of low-emissivity coatings on glass , 1987 .

[8]  T. Togawa Non-contact skin emissivity: measurement from reflectance using step change in ambient radiation temperature. , 1989, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[9]  J. Salisbury,et al.  Thermal‐infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements , 1993 .

[10]  V. B. Meyer-Rochow,et al.  A system of regular ridges instead of nipples on a compound eye that has to operate near the diffraction limit , 1993, Vision Research.

[11]  Dong Guoquan,et al.  The apparent emissivity of vegetation canopies , 1993 .

[12]  Eva Rubio,et al.  Emissivity measurements of several soils and vegetation types in the 8–14, μm Wave band: Analysis of two field methods , 1997 .

[13]  Paul G. Lucey,et al.  Infrared Measurements of Pristine and Disturbed Soils 2. Environmental Effects and Field Data Reduction , 1998 .

[14]  Eva Rubio,et al.  Thermal–infrared emissivities of natural surfaces: improvements on the experimental set-up and new measurements , 2003 .

[15]  B. Hay,et al.  Measurement of Infrared Spectral Directional Hemispherical Reflectance and Emissivity at BNM-LNE , 2005 .

[16]  Ling Fu,et al.  Physical modeling of filament light sources , 2006 .

[17]  James K. Crowley,et al.  Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm) , 2007 .

[18]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[19]  N. Stas’kov,et al.  IR spectra of the optical constants of an industrial high-pressure polyethylene film , 2008 .

[20]  Thomas J. Schmugge,et al.  Comparison of Thermal Infrared Emissivities Retrieved With the Two-Lid Box and the TES Methods With Laboratory Spectra , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[21]  James K. Crowley,et al.  Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5 μm) imagery , 2010 .

[22]  Harald van der Werff,et al.  Thermal Infrared Spectrometer for Earth Science Remote Sensing Applications—Instrument Modifications and Measurement Procedures , 2011, Sensors.

[23]  Simon J. Hook,et al.  Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Gary D. Lock,et al.  Application of infrared thermography to the study of behavioural fever in the desert locust , 2011 .

[25]  A. Gillespie,et al.  Thermal-infrared imaging of weathering and alteration changes on the surfaces of basalt flows, Hawai‘i, USA , 2013 .

[26]  Derek M. Rogge,et al.  The longwave infrared (3–14μm) spectral properties of rock encrusting lichens based on laboratory spectra and airborne SEBASS imagery , 2013 .

[27]  D. B. Shah,et al.  Field Measurements of Plant Emissivity Spectra: An Experimental Study on Remote Sensing of Vegetation in the Thermal Infrared Region , 2013, Journal of the Indian Society of Remote Sensing.

[28]  Lene Juul Pedersen,et al.  Determining the emissivity of pig skin for accurate infrared thermography , 2014 .

[29]  C. Bain,et al.  Total internal reflection spectroscopy for studying soft matter. , 2014, Soft matter.

[30]  M. Kucera,et al.  New experimental device for high-temperature normal spectral emissivity measurements of coatings , 2014 .

[31]  Andrew K. Skidmore,et al.  Retrieval of leaf water content spanning the visible to thermal infrared spectra , 2014 .

[32]  D. Beysens,et al.  Dew condensation on desert beetle skin , 2014, The European physical journal. E, Soft matter.

[33]  Jeffrey S. Kargel,et al.  The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[34]  L. Björn,et al.  Spectral Tuning in Biology II: Structural Color , 2015 .

[35]  Offer Rozenstein,et al.  Diurnal emissivity dynamics in bare versus biocrusted sand dunes. , 2015, The Science of the total environment.

[36]  Offer Rozenstein,et al.  Identification and characterization of Biological Soil Crusts in a sand dune desert environment across Israel–Egypt border using LWIR emittance spectroscopy , 2015 .

[37]  Fahad Shah,et al.  Electronic structure and optical properties of CdO from bulk to nanosheet: DFT approach , 2015 .

[38]  Gary D. Bernard,et al.  Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants , 2015, Science.

[39]  T. Ghosh,et al.  Total Hemispherical Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Alloy 617 , 2010, Nuclear Technology.