Magnetic Resonance Imaging Delineates the Ischemic Area at Risk and Myocardial Salvage in Patients With Acute Myocardial Infarction

Background—The area at risk (AAR) is a key determinant of myocardial infarction (MI) size. We investigated whether magnetic resonance imaging (MRI) measurement of AAR would be correlated with an angiographic AAR risk score in patients with acute MI. Methods and Results—Bright-blood, T2-prepared, steady-state, free-precession MRI was used to depict the AAR in 50 consecutive acute MI patients, whereas infarct size was measured on gadolinium late-contrast-enhancement images. AAR was also estimated by the APPROACH and DUKE angiographic jeopardy scores and ST-segment elevation score. Myocardial salvage was calculated as AAR minus infarct size. Results are mean±SD unless specified otherwise. Patients were 61±12 years of age, 76% had an ST-segment elevation MI, and 20% had a prior MI. All underwent MRI 4±2 days after initial presentation. The relation between MRI and the APPROACH angiographic estimates of AAR was similar (overall size relative to left ventricular mass was 32±12% vs 30±12%, respectively, P=0.33), correlated well (r=0.78, P<0.0001), and had a 2.5% bias on Bland-Altman analysis. The DUKE jeopardy score underestimated AAR relative to infarct size and was correlated less well with MRI (r=0.39, P=0.0055). ST-segment elevation score underestimated infarct size in 19 subjects (50%) and was not correlated with MRI (r=0.27, P=0.06). Myocardial salvage varied according to Thrombolysis in Myocardial Infarction flow grade at the end of angiography/percutaneous coronary intervention (P=0.04), and Thrombolysis in Myocardial Infarction flow grade was a univariable predictor of myocardial salvage (P=0.011). In multivariable analyses, infarct size was predicted by T2-prepared, steady-state, free-precession MRI (P<0.0001). Conclusions—T2-prepared, steady-state, free-precession MRI delineates the AAR and enables estimation of myocardial salvage when coupled with a measurement of infarct size.

[1]  D. O’Regan,et al.  Cardiac MRI of myocardial salvage at the peri-infarct border zones after primary coronary intervention. , 2009, American journal of physiology. Heart and circulatory physiology.

[2]  Einar Heiberg,et al.  Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: quantitative assessment during follow-up and validation with single-photon emission computed tomography. , 2009, JACC. Cardiovascular imaging.

[3]  Joseph V Hajnal,et al.  Reperfusion hemorrhage following acute myocardial infarction: assessment with T2* mapping and effect on measuring the area at risk. , 2009, Radiology.

[4]  R. Cury,et al.  Cardiac Magnetic Resonance With T2-Weighted Imaging Improves Detection of Patients With Acute Coronary Syndrome in the Emergency Department , 2008, Circulation.

[5]  J. Schulz-Menger,et al.  The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. , 2008, Journal of the American College of Cardiology.

[6]  Peter Kellman,et al.  Fully automatic, retrospective enhancement of real‐time acquired cardiac cine MR images using image‐based navigators and respiratory motion‐corrected averaging , 2008, Magnetic resonance in medicine.

[7]  Andrew E Arai,et al.  In Vivo T2-Weighted Magnetic Resonance Imaging Can Accurately Determine the Ischemic Area at Risk for 2-Day-Old Nonreperfused Myocardial Infarction , 2008, Investigative radiology.

[8]  Daniel C. Lee,et al.  Angiographic estimates of myocardium at risk during acute myocardial infarction: validation study using cardiac magnetic resonance imaging. , 2007, European heart journal.

[9]  E. McVeigh,et al.  T2‐prepared SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction compared to turbo spin echo , 2007, Magnetic resonance in medicine.

[10]  Colin Berry,et al.  Importance of collateral circulation in coronary heart disease. , 2007, European heart journal.

[11]  R. Kloner,et al.  The no-reflow phenomenon: A basic mechanism of myocardial ischemia and reperfusion , 2006, Basic Research in Cardiology.

[12]  D. Pennell Myocardial salvage: retrospection, resolution, and radio waves. , 2006, Circulation.

[13]  R. F. Hoyt,et al.  Cardiac magnetic resonance imaging , 2004, Postgraduate Medical Journal.

[14]  P. Kellman,et al.  Quantitative myocardial infarction on delayed enhancement MRI. Part I: Animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm , 2006, Journal of magnetic resonance imaging : JMRI.

[15]  P. Kellman,et al.  Quantitative myocardial infarction on delayed enhancement MRI. Part II: Clinical application of an automated feature analysis and combined thresholding infarct sizing algorithm , 2006, Journal of magnetic resonance imaging : JMRI.

[16]  G. Lamas,et al.  ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction--executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 guidelines for the management of patients wi , 2004, Journal of the American College of Cardiology.

[17]  Wolfgang G Rehwald,et al.  Infarct resorption, compensatory hypertrophy, and differing patterns of ventricular remodeling following myocardial infarctions of varying size. , 2004, Journal of the American College of Cardiology.

[18]  J. Schulz-Menger,et al.  Delayed Enhancement and T2-Weighted Cardiovascular Magnetic Resonance Imaging Differentiate Acute From Chronic Myocardial Infarction , 2004, Circulation.

[19]  E. McVeigh,et al.  Phase‐sensitive inversion recovery for detecting myocardial infarction using gadolinium‐delayed hyperenhancement † , 2002, Magnetic resonance in medicine.

[20]  W. Ghali,et al.  Validation of three myocardial jeopardy scores in a population-based cardiac catheterization cohort. , 2001, American heart journal.

[21]  H. S,et al.  Early Revascularization in Acute Myocardial Infarction Complicated by Cardiogenic Shock , 2000 .

[22]  G. Wagner,et al.  Terminal QRS distortion on admission is better than ST-segment measurements in predicting final infarct size and assessing the Potential effect of thrombolytic therapy in anterior wall acute myocardial infarction. , 1999, The American journal of cardiology.

[23]  G S Wagner,et al.  Estimates of myocardium at risk and collateral flow in acute myocardial infarction using electrocardiographic indexes with comparison to radionuclide and angiographic measures. , 1995, Journal of the American College of Cardiology.

[24]  J. Gili,et al.  Analysis of myocardial oedema by magnetic resonance imaging early after coronary artery occlusion with or without reperfusion. , 1993, Cardiovascular research.

[25]  Comparison of invasive and conservative strategies after treatment with intravenous tissue plasminogen activator in acute myocardial infarction. Results of the thrombolysis in myocardial infarction (TIMI) phase II trial. , 1989, The New England journal of medicine.

[26]  J. Brown,et al.  Regional myocardial blood flow, edema formation, and magnetic relaxation times during acute myocardial ischemia in the canine. , 1985, Investigative radiology.

[27]  R. A. Johnson,et al.  Prognostic value of a coronary artery jeopardy score. , 1985, Journal of the American College of Cardiology.

[28]  M. Cohen,et al.  Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. , 1985, Journal of the American College of Cardiology.

[29]  T. Foster,et al.  A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. , 1984, Medical physics.

[30]  R. Kloner,et al.  The "no-reflow" phenomenon after temporary coronary occlusion in the dog. , 1974, The Journal of clinical investigation.