Old and New Results on Strange Nonchaotic attractors
暂无分享,去创建一个
Angel Jorba | Rafael Obaya | Joan Carles Tatjer | J. C. Tatjer | Carmen Núñez | R. Obaya | C. Núñez | À. Jorba
[1] R. Fabbri. On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator , 2002 .
[2] Robert Ellis,et al. Lectures in Topological Dynamics , 1969 .
[3] R. Ortega,et al. Almost periodic upper and lower solutions , 2003 .
[4] A. Avila,et al. The Ten Martini Problem , 2009 .
[5] J. Bourgain,et al. Continuity of the Lyapunov Exponent for Quasiperiodic Operators with Analytic Potential , 2001 .
[6] J. Yorke,et al. Strange attractors that are not chaotic , 1984 .
[7] Àngel Jorba,et al. Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .
[8] P. Deift,et al. The Absolutely Continuous Spectrum in One Dimension , 1983 .
[9] Ramakrishna Ramaswamy,et al. Strange Nonchaotic attractors , 2001, Int. J. Bifurc. Chaos.
[10] À. Haro,et al. Strange nonchaotic attractors in Harper maps. , 2005, Chaos.
[11] James F. Selgrade,et al. Isolated invariant sets for flows on vector bundles , 1975 .
[12] R. Obaya,et al. An ergodic classification of bidimensional linear systems , 1996 .
[13] Y. Sinai. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .
[14] Tobias Jäger,et al. Quasiperiodically forced interval maps with negative Schwarzian derivative , 2003 .
[15] Gerhard Keller. A note on strange nonchaotic attractors , 1996 .
[16] Yingfei Yi,et al. Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows , 1998 .
[17] Michael E. Paul,et al. Almost automorphic symbolic minimal sets without unique ergodicity , 1979 .
[18] H. Weyl,et al. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .
[19] J. Bochi. Genericity of zero Lyapunov exponents , 2002, Ergodic Theory and Dynamical Systems.
[20] R. Gjerde,et al. Bratteli–Vershik models for Cantor minimal systems: applications to Toeplitz flows , 2000, Ergodic Theory and Dynamical Systems.
[21] Rafael Obaya,et al. Ergodic properties and Weyl M-functions for random linear Hamiltonian systems , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[22] S. Kotani. Ljapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators , 1984 .
[23] P. Koosis. Introduction to H[p] spaces , 1999 .
[24] Tomasz Kapitaniak,et al. Analytical conditions for strange chaotic and nonchaotic attractors of the quasiperiodically forced van der pol equation , 1991 .
[25] Ergodic theory for the one-dimensional Jacobi operator , 1996 .
[26] L. Eliasson. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum , 1997 .
[27] Jukka A. Ketoja,et al. Harper equation, the dissipative standard map and strange nonchaotic attractors: relationship between an eigenvalue problem and iterated maps , 1997 .
[28] J. Fröhlich,et al. Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .
[29] A Sharkovskii-type theorem for minimally forced interval maps , 2005 .
[30] On nonperturbative localization with quasi-periodic potential , 2000, math-ph/0011053.
[31] George R. Sell,et al. Existence of dichotomies and invariant splittings for linear differential systems, II☆ , 1976 .
[32] T. Spencer,et al. Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials , 1991 .
[33] George R. Sell,et al. A Spectral Theory for Linear Differential Systems , 1978 .
[34] Steve Surace. Positive Lyapunov exponents for a class of ergodic Schrödinger operators , 1994 .
[35] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[36] Russell Johnson. On a Floquet theory for almost-periodic, two-dimensional linear systems , 1980 .
[37] Russell Johnson. Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients , 1986 .
[38] Harry Furstenberg,et al. Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.
[39] S. Siegmund,et al. On almost automorphic dynamics in symbolic lattices , 2004, Ergodic Theory and Dynamical Systems.
[40] J. Bochi,et al. The Lyapunov exponents of generic volume-preserving and symplectic maps , 2005 .
[41] Russell Johnson. The recurrent Hill's equation , 1982 .
[42] J. Stark. Invariant graphs for forced systems , 1997 .
[43] Almost periodic and almost automorphic dynamics for scalar convex differential equations , 2004 .
[44] L. Arnold. Random Dynamical Systems , 2003 .
[45] Y. Lacroix,et al. Some constructions of strictly ergodic non-regular Toeplitz flows , 1994 .
[46] Rob Sturman,et al. Semi-uniform ergodic theorems and applications to forced systems , 2000 .
[47] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[48] Ott,et al. Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing. , 1987, Physical review. A, General physics.
[49] Russell Johnson. On almost-periodic linear differential systems of Millionščikov and Vinograd , 1982 .
[50] M. Qian,et al. Global behavior in the dynamical equation of J-J type , 1988 .
[51] Susan G. Williams. Toeplitz minimal flows which are not uniquely ergodic , 1984 .
[52] V. Oseledets,et al. An example of a strange nonchaotic attractor , 1996 .
[53] J. C. Tatjer,et al. A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps , 2008 .
[54] R. Slade. On magnetic resonance and neutron scattering investigations of proton transport in solids , 1985 .
[55] R. Obaya,et al. Almost Automorphic and Almost Periodic Dynamics for Quasimonotone Non-Autonomous Functional Differential Equations , 2005 .
[56] Kristian Bjerklöv. Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations , 2005, Ergodic Theory and Dynamical Systems.
[57] Boris Hasselblatt,et al. Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .