Old and New Results on Strange Nonchaotic attractors

Classical and new results concerning the topological structure of skew-products semiflows, coming from nonautonomous maps and differential equations, are combined in order to establish rigorous conditions giving rise to the occurrence of strange nonchaotic attractors on 𝕋d × ℝ. A special attention is paid to the relation of these sets with the almost automorphic extensions of the base flow. The scope of the results is clarified by applying them to the Harper map, although they are valid in a much wider context.

[1]  R. Fabbri On the Lyapunov exponent and exponential dichotomy for the quasi-periodic Schrödinger operator , 2002 .

[2]  Robert Ellis,et al.  Lectures in Topological Dynamics , 1969 .

[3]  R. Ortega,et al.  Almost periodic upper and lower solutions , 2003 .

[4]  A. Avila,et al.  The Ten Martini Problem , 2009 .

[5]  J. Bourgain,et al.  Continuity of the Lyapunov Exponent for Quasiperiodic Operators with Analytic Potential , 2001 .

[6]  J. Yorke,et al.  Strange attractors that are not chaotic , 1984 .

[7]  Àngel Jorba,et al.  Numerical computation of the normal behaviour of invariant curves of n-dimensional maps , 2001 .

[8]  P. Deift,et al.  The Absolutely Continuous Spectrum in One Dimension , 1983 .

[9]  Ramakrishna Ramaswamy,et al.  Strange Nonchaotic attractors , 2001, Int. J. Bifurc. Chaos.

[10]  À. Haro,et al.  Strange nonchaotic attractors in Harper maps. , 2005, Chaos.

[11]  James F. Selgrade,et al.  Isolated invariant sets for flows on vector bundles , 1975 .

[12]  R. Obaya,et al.  An ergodic classification of bidimensional linear systems , 1996 .

[13]  Y. Sinai Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .

[14]  Tobias Jäger,et al.  Quasiperiodically forced interval maps with negative Schwarzian derivative , 2003 .

[15]  Gerhard Keller A note on strange nonchaotic attractors , 1996 .

[16]  Yingfei Yi,et al.  Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows , 1998 .

[17]  Michael E. Paul,et al.  Almost automorphic symbolic minimal sets without unique ergodicity , 1979 .

[18]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .

[19]  J. Bochi Genericity of zero Lyapunov exponents , 2002, Ergodic Theory and Dynamical Systems.

[20]  R. Gjerde,et al.  Bratteli–Vershik models for Cantor minimal systems: applications to Toeplitz flows , 2000, Ergodic Theory and Dynamical Systems.

[21]  Rafael Obaya,et al.  Ergodic properties and Weyl M-functions for random linear Hamiltonian systems , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[22]  S. Kotani Ljapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators , 1984 .

[23]  P. Koosis Introduction to H[p] spaces , 1999 .

[24]  Tomasz Kapitaniak,et al.  Analytical conditions for strange chaotic and nonchaotic attractors of the quasiperiodically forced van der pol equation , 1991 .

[25]  Ergodic theory for the one-dimensional Jacobi operator , 1996 .

[26]  L. Eliasson Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum , 1997 .

[27]  Jukka A. Ketoja,et al.  Harper equation, the dissipative standard map and strange nonchaotic attractors: relationship between an eigenvalue problem and iterated maps , 1997 .

[28]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[29]  A Sharkovskii-type theorem for minimally forced interval maps , 2005 .

[30]  On nonperturbative localization with quasi-periodic potential , 2000, math-ph/0011053.

[31]  George R. Sell,et al.  Existence of dichotomies and invariant splittings for linear differential systems, II☆ , 1976 .

[32]  T. Spencer,et al.  Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials , 1991 .

[33]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[34]  Steve Surace Positive Lyapunov exponents for a class of ergodic Schrödinger operators , 1994 .

[35]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[36]  Russell Johnson On a Floquet theory for almost-periodic, two-dimensional linear systems , 1980 .

[37]  Russell Johnson Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients , 1986 .

[38]  Harry Furstenberg,et al.  Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation , 1967, Mathematical systems theory.

[39]  S. Siegmund,et al.  On almost automorphic dynamics in symbolic lattices , 2004, Ergodic Theory and Dynamical Systems.

[40]  J. Bochi,et al.  The Lyapunov exponents of generic volume-preserving and symplectic maps , 2005 .

[41]  Russell Johnson The recurrent Hill's equation , 1982 .

[42]  J. Stark Invariant graphs for forced systems , 1997 .

[43]  Almost periodic and almost automorphic dynamics for scalar convex differential equations , 2004 .

[44]  L. Arnold Random Dynamical Systems , 2003 .

[45]  Y. Lacroix,et al.  Some constructions of strictly ergodic non-regular Toeplitz flows , 1994 .

[46]  Rob Sturman,et al.  Semi-uniform ergodic theorems and applications to forced systems , 2000 .

[47]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[48]  Ott,et al.  Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing. , 1987, Physical review. A, General physics.

[49]  Russell Johnson On almost-periodic linear differential systems of Millionščikov and Vinograd , 1982 .

[50]  M. Qian,et al.  Global behavior in the dynamical equation of J-J type , 1988 .

[51]  Susan G. Williams Toeplitz minimal flows which are not uniquely ergodic , 1984 .

[52]  V. Oseledets,et al.  An example of a strange nonchaotic attractor , 1996 .

[53]  J. C. Tatjer,et al.  A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps , 2008 .

[54]  R. Slade On magnetic resonance and neutron scattering investigations of proton transport in solids , 1985 .

[55]  R. Obaya,et al.  Almost Automorphic and Almost Periodic Dynamics for Quasimonotone Non-Autonomous Functional Differential Equations , 2005 .

[56]  Kristian Bjerklöv Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations , 2005, Ergodic Theory and Dynamical Systems.

[57]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .