Quasi-hierarchical Powell-Sabin B-splines

Hierarchical Powell-Sabin splines are C^1-continuous piecewise quadratic polynomials defined on a hierarchical triangulation. The mesh is obtained by partitioning an initial conforming triangulation locally with a triadic split, so that it is no longer conforming. We propose a normalized quasi-hierarchical basis for this spline space. The basis functions have a local support, they form a convex partition of unity, and they admit local subdivision. We show that the basis is strongly stable on uniform hierarchical triangulations. We consider two applications: data fitting and surface modelling.

[1]  Frank Zeilfelder,et al.  Local Lagrange Interpolation on Powell-Sabin Triangulations and Terrain Modelling , 2001 .

[2]  Hendrik Speleers,et al.  Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..

[3]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[4]  L. Schumaker,et al.  Surface Fitting and Multiresolution Methods , 1997 .

[5]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[6]  Wim Sweldens,et al.  An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..

[7]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[8]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[9]  R ForseyDavid,et al.  Hierarchical B-spline refinement , 1988 .

[10]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[11]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[12]  Paul Dierckx,et al.  Subdivision of uniform Powell-Sabin splines , 1999, Comput. Aided Geom. Des..

[13]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[14]  David R. Forsey,et al.  Surface fitting with hierarchical splines , 1995, TOGS.

[15]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[16]  Kurt Jetter,et al.  Recent Progress in Multivariate Approximation , 2001 .

[17]  Gregory M. Nielson A first-order blending method for triangles based upon cubic interpolation , 1980 .

[18]  Adhemar Bultheel,et al.  Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..

[19]  Hong Qin,et al.  A C1 Globally Interpolatory Spline of Arbitrary Topology , 2005, VLSM.

[20]  Adhemar Bultheel,et al.  Powell-Sabin spline Wavelets , 2004, Int. J. Wavelets Multiresolution Inf. Process..

[21]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[22]  Adhemar Bultheel,et al.  On the stability of normalized Powell-Sabin B-splines , 2004 .

[23]  Frank Zeilfelder,et al.  Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines , 2004, Adv. Comput. Math..

[24]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[25]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[26]  Hans-Peter Seidel,et al.  Multiresolution analysis over triangles, based on quadratic Hermite interpolation , 2000 .

[27]  Hendrik Speleers,et al.  Local subdivision of Powell-Sabin splines , 2006, Comput. Aided Geom. Des..

[28]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[29]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[30]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[31]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[32]  Hendrik Speleers,et al.  Multigrid methods with Powell–Sabin splines , 2008 .

[33]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[34]  Hans Hagen,et al.  Least squares surface approximation using multiquadrics and parametric domain distortion , 1999, Comput. Aided Geom. Des..

[35]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[36]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[37]  Paul Sablonnière,et al.  Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .

[38]  Adhemar Bultheel,et al.  A tangent subdivision scheme , 2006, TOGS.