Quasi-hierarchical Powell-Sabin B-splines
暂无分享,去创建一个
[1] Frank Zeilfelder,et al. Local Lagrange Interpolation on Powell-Sabin Triangulations and Terrain Modelling , 2001 .
[2] Hendrik Speleers,et al. Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..
[3] Tom Lyche,et al. T-spline simplification and local refinement , 2004, ACM Trans. Graph..
[4] L. Schumaker,et al. Surface Fitting and Multiresolution Methods , 1997 .
[5] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[6] Wim Sweldens,et al. An Overview of Wavelet Based Multiresolution Analyses , 1994, SIAM Rev..
[7] Eitan Grinspun,et al. Natural hierarchical refinement for finite element methods , 2003 .
[8] Eitan Grinspun,et al. CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..
[9] R ForseyDavid,et al. Hierarchical B-spline refinement , 1988 .
[10] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[11] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[12] Paul Dierckx,et al. Subdivision of uniform Powell-Sabin splines , 1999, Comput. Aided Geom. Des..
[13] Paul Dierckx,et al. Algorithms for surface fitting using Powell-Sabin splines , 1992 .
[14] David R. Forsey,et al. Surface fitting with hierarchical splines , 1995, TOGS.
[15] Hendrik Speleers,et al. Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .
[16] Kurt Jetter,et al. Recent Progress in Multivariate Approximation , 2001 .
[17] Gregory M. Nielson. A first-order blending method for triangles based upon cubic interpolation , 1980 .
[18] Adhemar Bultheel,et al. Automatic construction of control triangles for subdivided Powell-Sabin splines , 2004, Comput. Aided Geom. Des..
[19] Hong Qin,et al. A C1 Globally Interpolatory Spline of Arbitrary Topology , 2005, VLSM.
[20] Adhemar Bultheel,et al. Powell-Sabin spline Wavelets , 2004, Int. J. Wavelets Multiresolution Inf. Process..
[21] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[22] Adhemar Bultheel,et al. On the stability of normalized Powell-Sabin B-splines , 2004 .
[23] Frank Zeilfelder,et al. Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines , 2004, Adv. Comput. Math..
[24] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[25] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[26] Hans-Peter Seidel,et al. Multiresolution analysis over triangles, based on quadratic Hermite interpolation , 2000 .
[27] Hendrik Speleers,et al. Local subdivision of Powell-Sabin splines , 2006, Comput. Aided Geom. Des..
[28] Paul Dierckx,et al. Curve and surface fitting with splines , 1994, Monographs on numerical analysis.
[29] H. Yserentant. On the multi-level splitting of finite element spaces , 1986 .
[30] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[31] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..
[32] Hendrik Speleers,et al. Multigrid methods with Powell–Sabin splines , 2008 .
[33] Larry L. Schumaker,et al. Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..
[34] Hans Hagen,et al. Least squares surface approximation using multiquadrics and parametric domain distortion , 1999, Comput. Aided Geom. Des..
[35] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[36] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[37] Paul Sablonnière,et al. Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .
[38] Adhemar Bultheel,et al. A tangent subdivision scheme , 2006, TOGS.