A Simple Proof of the Existence of the Best Estimator in a Quasilinear Regression Model

We provide a theorem on the existence of the best estimator in a quasilinear regression model, from which the existence of the best estimator for the whole class of nonlinear model functions follows immediately. The obtained theorem both extends and generalizes the previously known existence result. Our proof is elementary and rests on the basic knowledge of linear algebra and calculus.

[1]  Yves Nievergelt,et al.  On the existence of best Mitscherlich, Verhulst, and west growth curves for generalized least-squares regression , 2013, J. Comput. Appl. Math..

[2]  Dragan Jukic,et al.  A necessary and sufficient criteria for the existence of the least squares estimate for a 3-parametric exponential function , 2004, Appl. Math. Comput..

[3]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[4]  Dragan Jukic,et al.  The L p -norm estimation of the parameters for the Jelinski–Moranda model in software reliability , 2012, Int. J. Comput. Math..

[5]  William W. Fox,et al.  An Exponential Surplus-Yield Model for Optimizing Exploited Fish Populations , 1970 .

[6]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[7]  R. Scitovski,et al.  Least-squares fitting Gompertz curve , 2004 .

[8]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[9]  Eugene Demidenko,et al.  Criteria for global minimum of sum of squares in nonlinear regression , 2006, Comput. Stat. Data Anal..

[10]  Dragan Jukic On the existence of the best discrete approximation in lp norm by reciprocals of real polynomials , 2009, J. Approx. Theory.

[11]  David A. Ratkowsky,et al.  Handbook of nonlinear regression models , 1990 .

[12]  Kristian Sabo,et al.  Least‐squares problems for Michaelis–Menten kinetics , 2007 .

[13]  D. Jukic,et al.  On nonlinear weighted total least squares parameter estimation problem for the three-parameter Weibull density , 2010 .

[14]  G. A. Watson,et al.  Use of lp norms in fitting curves and surfaces to data , 2004 .

[15]  E. Demidenko,et al.  Criteria for Unconstrained Global Optimization , 2008 .