Improved state of charge estimation for lithium-sulfur batteries

[1]  Emanuel Peled,et al.  Electrochemistry of a nonaqueous lithium/sulfur cell , 1983 .

[2]  P. Abbeel,et al.  Kalman filtering , 2020, IEEE Control Systems Magazine.

[3]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[4]  P. Barrade,et al.  SUPERCAPACITORS FOR PEAK-POWER DEMAND IN FUEL-CELL-DRIVEN CARS , 2001 .

[5]  D. Morrey,et al.  Automotive test drive cycles for emission measurement and real-world emission levels-a review , 2002 .

[6]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[7]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background , 2004 .

[8]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[9]  Characterisation , 2004, Varlam Shalamov’s <i>Kolyma Tales</i>.

[10]  Gregory L. Plett,et al.  Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2: Simultaneous state and parameter estimation , 2006 .

[11]  Gregory L. Plett,et al.  Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1: Introduction and state estimation , 2006 .

[12]  Andreas Jossen,et al.  Fundamentals of battery dynamics , 2006 .

[13]  Vladimir Kolosnitsyn,et al.  Lithium-sulfur batteries: Problems and solutions , 2008 .

[14]  Edward K. Nam,et al.  Impact of Real-World Drive Cycles on PHEV Battery Requirements , 2009 .

[15]  Zaiping Guo,et al.  Investigation of discharge reaction mechanism of lithium|liquid electrolyte|sulfur battery , 2009 .

[16]  Jason Xu,et al.  High Energy Rechargeable Li-S Cells for EV Application: Status, Remaining Problems and Solutions , 2010 .

[17]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[18]  Yi-Hsien Chiang,et al.  Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electr , 2011 .

[19]  S. E. Mochalov,et al.  A study of the electrochemical processes in lithiumsulphur cells by impedance spectroscopy , 2011 .

[20]  Hongwen He,et al.  Comparison study on the battery models used for the energy management of batteries in electric vehicles , 2012 .

[21]  Claire Elizabeth Parfitt,et al.  Characterisation, modelling and management of lithium-sulphur batteries for spacecraft applications , 2012 .

[22]  Hongwen He,et al.  Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles , 2012 .

[23]  Kai Zhao,et al.  Evaluation on State of Charge Estimation of Batteries With Adaptive Extended Kalman Filter by Experiment Approach , 2013, IEEE Transactions on Vehicular Technology.

[24]  Kai Xie,et al.  Shuttle phenomenon – The irreversible oxidation mechanism of sulfur active material in Li–S battery , 2013 .

[25]  Zhian Zhang,et al.  Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading , 2013 .

[26]  Robert Dominko,et al.  Li-S battery analyzed by UV/Vis in operando mode. , 2013, ChemSusChem.

[27]  Binggang Cao,et al.  The State of Charge Estimation of Lithium-Ion Batteries Based on a Proportional-Integral Observer , 2014, IEEE Transactions on Vehicular Technology.

[28]  John Newman,et al.  Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery , 2014 .

[29]  Klaus Leitner,et al.  Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates , 2014 .

[30]  Remus Teodorescu,et al.  Electrical circuit models for performance modeling of Lithium-Sulfur batteries , 2015, 2015 IEEE Energy Conversion Congress and Exposition (ECCE).

[31]  Vladimir Kolosnitsyn,et al.  On the reasons for low sulphur utilization in the lithium-sulphur batteries , 2015 .

[32]  Mark Wild,et al.  Lithium sulfur batteries, a mechanistic review , 2015 .

[33]  D. Aurbach,et al.  The Effect of Interactions and Reduction Products of LiNO3, the Anti-Shuttle Agent, in Li-S Battery Systems , 2015 .

[34]  M. Marinescu,et al.  Modeling the voltage loss mechanisms in lithium-sulfur cells: the importance of electrolyte resistance and precipitation kinetics. , 2015, Physical chemistry chemical physics : PCCP.

[35]  M. Marinescu,et al.  A zero dimensional model of lithium-sulfur batteries during charge and discharge. , 2016, Physical chemistry chemical physics : PCCP.

[36]  Stefano Longo,et al.  A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur , 2016 .

[37]  Stefano Longo,et al.  Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries , 2016 .

[38]  Remus Teodorescu,et al.  Investigation of the Self-Discharge Behavior of Lithium-Sulfur Batteries , 2016 .

[39]  Karsten Propp,et al.  Electric Vehicle Battery Parameter Identification and SOC Observability Analysis: NiMH and Li-S Case Studies , 2017 .

[40]  A. Fotouhi,et al.  Kalman-variant estimators for state of charge in lithium-sulfur batteries , 2017 .

[41]  Daniel-Ioan Stroe,et al.  Methodology for Assessing the Lithium-Sulfur Battery Degradation for Practical Applications , 2017 .

[42]  Stefano Longo,et al.  Accuracy Versus Simplicity in Online Battery Model Identification , 2018, IEEE Transactions on Systems, Man, and Cybernetics: Systems.