Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates.

Recent progress in an emerging area of designing aptamer and nanomaterial conjugates as molecular diagnostic and drug delivery agents in biomedical applications is summarized. Aptamers specific for a wide range of targets are first introduced and compared to antibodies. Methods of integrating these aptamers with a variety of nanomaterials, such as gold nanoparticles, quantum dots, carbon nanotubes, and superparamagnetic iron oxide nanoparticles, each with unique optical, magnetic, and electrochemical properties, are reviewed. Applications of these systems as fluorescent, colorimetric, magnetic resonance imaging, and electrochemical sensors in medical diagnostics are given, along with new applications as smart drug delivery agents.

[1]  S. Gambhir,et al.  Noninvasive molecular imaging of small living subjects using Raman spectroscopy , 2008, Proceedings of the National Academy of Sciences.

[2]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[3]  Kee Suk Ryu,et al.  A modular microfluidic architecture for integrated biochemical analysis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  N. Seeman The design and engineering of nucleic acid nanoscale assemblies. , 1996, Current opinion in structural biology.

[5]  Juewen Liu,et al.  Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. , 2005, Angewandte Chemie.

[6]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[7]  Yi Lu,et al.  Surface immobilization of catalytic beacons based on ratiometric fluorescent DNAzyme sensors: a systematic study. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[8]  Jian-hui Jiang,et al.  Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. , 2008, Biosensors & bioelectronics.

[9]  Yi Lu,et al.  A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. , 2007, Journal of the American Chemical Society.

[10]  Yi Lu,et al.  Functional-DNA–Based Nanoscale Materials and Devices for Sensing Trace Contaminants in Water , 2008 .

[11]  Emmett T. Cunningham,et al.  VEGF INHIBITION STUDY IN OCULAR NEOVASCULARIZATION CLINICAL TRIAL GROUP. PEGAPTANIB FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION , 2004 .

[12]  Yi Lu,et al.  MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. , 2008, Bioconjugate chemistry.

[13]  Chunhai Fan,et al.  A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. , 2007, Journal of the American Chemical Society.

[14]  Sheela M. Waugh,et al.  2′-Fluoropyrimidine RNA-based Aptamers to the 165-Amino Acid Form of Vascular Endothelial Growth Factor (VEGF165) , 1998, The Journal of Biological Chemistry.

[15]  Chad A. Mirkin,et al.  Programmed Assembly of DNA Functionalized Quantum Dots , 1999 .

[16]  Juewen Liu,et al.  Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. , 2007, Chemical communications.

[17]  Yi Lu,et al.  Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. , 2007, Angewandte Chemie.

[18]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[19]  Juewen Liu,et al.  Biochemical Characterization of a Uranyl Ion‐Specific DNAzyme , 2009, Chembiochem : a European journal of chemical biology.

[20]  Mario Leclerc,et al.  Optical sensors based on hybrid aptamer/conjugated polymer complexes. , 2004, Journal of the American Chemical Society.

[21]  Yi Lu,et al.  Smart “Turn‐on” Magnetic Resonance Contrast Agents Based on Aptamer‐Functionalized Superparamagnetic Iron Oxide Nanoparticles , 2007, Chembiochem : a European journal of chemical biology.

[22]  C. Férec,et al.  The potential of oligonucleotides for therapeutic applications. , 2006, Trends in biotechnology.

[23]  Weihong Tan,et al.  Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. , 2005, Analytical chemistry.

[24]  B. Shen,et al.  Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. , 2003, Journal of biotechnology.

[25]  E. Gragoudas,et al.  Pegaptanib for neovascular age-related macular degeneration. , 2004, The New England journal of medicine.

[26]  Itamar Willner,et al.  Amplified DNA detection by electrogenerated biochemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator. , 2002, Angewandte Chemie.

[27]  Yi Lu,et al.  Reversible cell-specific drug delivery with aptamer-functionalized liposomes. , 2009, Angewandte Chemie.

[28]  Yingfu Li,et al.  DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. , 2008, Journal of the American Chemical Society.

[29]  Robert Langer,et al.  Quantum dot-aptamer conjugates for synchronous cancer imaging and therapy based on bi-fluorescence resonance energy transfer , 2007 .

[30]  J. Sweedler,et al.  Gateable nanofluidic interconnects for multilayered microfluidic separation systems. , 2003, Analytical chemistry.

[31]  Itamar Willner,et al.  Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. , 2006, Analytical chemistry.

[32]  Yi Lu,et al.  Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. , 2005, Journal of the American Chemical Society.

[33]  Yang Li,et al.  An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe , 2005, Nucleic acids research.

[34]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[35]  Ioanis Katakis,et al.  Different strategies to develop an electrochemical thrombin aptasensor , 2006 .

[36]  Penelope C Ioannou,et al.  Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. , 2003, Analytical chemistry.

[37]  R. Naaman,et al.  Confocal Fluorescence Imaging of DNA-Functionalized Carbon Nanotubes , 2003 .

[38]  Kevin W Plaxco,et al.  A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. , 2005, Journal of the American Chemical Society.

[39]  Juewen Liu,et al.  Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. , 2006, Current opinion in biotechnology.

[40]  Huixiang Li,et al.  Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. , 2004, Journal of the American Chemical Society.

[41]  D. Astruc,et al.  Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum‐Size‐Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. , 2004 .

[42]  Jing Li,et al.  DNAzyme-based colorimetric sensing of lead (Pb2+) using unmodified gold nanoparticle probes , 2008, Nanotechnology.

[43]  Itamar Willner,et al.  Label-free and reagentless aptamer-based sensors for small molecules. , 2006, Journal of the American Chemical Society.

[44]  M. Yarus,et al.  Selection of an RNA domain that binds Zn2+. , 1995, RNA.

[45]  D. Shangguan,et al.  Aptamers evolved from live cells as effective molecular probes for cancer study , 2006, Proceedings of the National Academy of Sciences.

[46]  M. Levy,et al.  Quantum‐Dot Aptamer Beacons for the Detection of Proteins , 2005, Chembiochem : a European journal of chemical biology.

[47]  Juewen Liu,et al.  Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device. , 2005, Environmental science & technology.

[48]  Kenzo Maehashi,et al.  Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. , 2007, Analytical chemistry.

[49]  E. Vermaas,et al.  Selection of single-stranded DNA molecules that bind and inhibit human thrombin , 1992, Nature.

[50]  R. Langer,et al.  Drug delivery and targeting. , 1998, Nature.

[51]  Ralph Weissleder,et al.  Use of Magnetic Nanoparticles as Nanosensors to Probe for Molecular Interactions , 2004, Chembiochem : a European journal of chemical biology.

[52]  Jack W. Szostak,et al.  An RNA motif that binds ATP , 1993, Nature.

[53]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[54]  Jijun Tang,et al.  In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection. , 2007, Biosensors & bioelectronics.

[55]  J. Kiel,et al.  In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. , 1999, Biosensors & bioelectronics.

[56]  Jijun Tang,et al.  The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods , 2006, Electrophoresis.

[57]  Yi Lu,et al.  A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity , 2007, Proceedings of the National Academy of Sciences.

[58]  Jun Li,et al.  Preparation of Nucleic Acid Functionalized Carbon Nanotube Arrays , 2002 .

[59]  Ronghua Yang,et al.  Regulation of singlet oxygen generation using single-walled carbon nanotubes. , 2008, Journal of the American Chemical Society.

[60]  Yun Xiang,et al.  Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. , 2006, Journal of the American Chemical Society.

[61]  Yi Lu,et al.  Functional DNA directed assembly of nanomaterials for biosensing. , 2009, Journal of materials chemistry.

[62]  Yi Lu,et al.  Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. , 2007, Angewandte Chemie.

[63]  S. Bachilo,et al.  Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. , 2004, Journal of the American Chemical Society.

[64]  N. Halas,et al.  Surface-enhanced Raman spectroscopy of DNA. , 2008, Journal of the American Chemical Society.

[65]  D. Guyer,et al.  Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease , 2006, Nature Reviews Drug Discovery.

[66]  Ko Kang Ning,et al.  SYNTHESIS AND CHARACTERIZATION OF , 2011 .

[67]  Michael Famulok,et al.  Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. , 2007, Chemical reviews.

[68]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[69]  Sonny C. Hsiao,et al.  Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. , 2009, Journal of the American Chemical Society.

[70]  Milan N Stojanovic,et al.  Aptamer-based colorimetric probe for cocaine. , 2002, Journal of the American Chemical Society.

[71]  Yi Lu,et al.  Highly sensitive and selective colorimetric sensors for uranyl (UO2(2+)): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. , 2008, Journal of the American Chemical Society.

[72]  A. Heeger,et al.  An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. , 2006, Journal of the American Chemical Society.

[73]  Yi Lu,et al.  Smart Nanomaterials Responsive to Multiple Chemical Stimuli with Controllable Cooperativity , 2006 .

[74]  Michael Famulok,et al.  Stereospecific recognition of tryptophan agarose by in vitro selected RNA , 1992 .

[75]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[76]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[77]  J. M. Healy,et al.  Complex Target SELEX , 2008 .

[78]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[79]  Andrew D. Ellington,et al.  Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity , 2000 .

[80]  J. Rogers,et al.  Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. , 2008, Nano letters.

[81]  X. Liu,et al.  A Gold Nanoparticle‐Based Aptamer Target Binding Readout for ATP Assay , 2007 .

[82]  Yingfu Li,et al.  Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[83]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[84]  A. Perkins,et al.  Update: aptamers as novel radiopharmaceuticals: their applications and future prospects in diagnosis and therapy. , 2007, Cancer biotherapy & radiopharmaceuticals.

[85]  I. Willner,et al.  Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble product onto electrodes. , 2003, Chemistry.

[86]  Christof M Niemeyer,et al.  Reversible switching of DNA-gold nanoparticle aggregation. , 2004, Angewandte Chemie.

[87]  Chad A Mirkin,et al.  Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. , 2007, Angewandte Chemie.

[88]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[89]  Yi Lu,et al.  Smart Nanomaterials Inspired by Biology: Dynamic Assembly of Error‐Free Nanomaterials in Response to Multiple Chemical and Biological Stimuli , 2007 .

[90]  Yi Lu,et al.  Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal standard for Pb(ii) sensing. , 2006, The Analyst.

[91]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[92]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[93]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[94]  M. Bowser,et al.  In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. , 2005, Journal of the American Chemical Society.

[95]  Yi Lu,et al.  Immobilization of DNAzyme catalytic beacons on PMMA for Pb2+ detection. , 2008, Lab on a chip.

[96]  Jeong-O Lee,et al.  Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. , 2008, Small.

[97]  Yi Lu,et al.  A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. , 2003, Journal of the American Chemical Society.

[98]  Steven S Smith,et al.  Application of Nanoscale Bioassemblies to Clinical Laboratory Diagnostics. , 2006, Advances in clinical chemistry.

[99]  J. Szostak,et al.  Isolation of a fluorophore-specific DNA aptamer with weak redox activity. , 1998, Chemistry & biology.

[100]  Yi Lu,et al.  Immobilization of a catalytic DNA molecular beacon on Au for Pb(II) detection. , 2005, Analytical chemistry.

[101]  S. Soper,et al.  Surface immobilization methods for aptamer diagnostic applications , 2008, Analytical and bioanalytical chemistry.

[102]  A. Heeger,et al.  Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. , 2005, Angewandte Chemie.

[103]  Anthony D. Keefe,et al.  Direct in vitro selection of a 2'-O-methyl aptamer to VEGF. , 2005, Chemistry & biology.

[104]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[105]  Ciara K O'Sullivan,et al.  Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. , 2006, Journal of the American Chemical Society.

[106]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[107]  C H Heldin,et al.  Inhibitory DNA ligands to platelet-derived growth factor B-chain. , 1996, Biochemistry.

[108]  H. Yeh,et al.  Single-quantum-dot-based DNA nanosensor , 2005, Nature materials.

[109]  M. Mascini,et al.  Aptamers-based assays for diagnostics, environmental and food analysis. , 2007, Biomolecular engineering.

[110]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[111]  M F Kubik,et al.  Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. , 1997, Journal of molecular biology.

[112]  Jing Li,et al.  A highly sensitive and selective catalytic DNA biosensor for lead ions [9] , 2000 .

[113]  Reinhard Renneberg,et al.  New trends in immunoassays. , 2008, Advances in biochemical engineering/biotechnology.

[114]  Milan N Stojanovic,et al.  Fluorescent Sensors Based on Aptamer Self-Assembly. , 2000, Journal of the American Chemical Society.

[115]  C. Vargeese,et al.  Potent 2'-amino-2'-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. , 1995, Biochemistry.

[116]  Paul W. Bohn,et al.  Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates , 2003 .

[117]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[118]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[119]  Xiaofang Hu,et al.  Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. , 2006, Chemical communications.

[120]  Weihong Tan,et al.  Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. , 2006, Analytical chemistry.

[121]  H. Ulrich,et al.  DNA and RNA aptamers: from tools for basic research towards therapeutic applications. , 2006, Combinatorial chemistry & high throughput screening.

[122]  Robert Langer,et al.  Superparamagnetic Iron Oxide Nanoparticle-Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy , 2011 .

[123]  Walter H. Chang,et al.  Design of an amphiphilic polymer for nanoparticle coating and functionalization. , 2008, Small.

[124]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[125]  Zhuang Liu,et al.  Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. , 2006, Angewandte Chemie.

[126]  Itamar Willner,et al.  Detection of single-base DNA mutations by enzyme-amplified electronic transduction , 2001, Nature Biotechnology.

[127]  H. Schluesener,et al.  Systematic Evolution of a DNA Aptamer Binding to Rat Brain Tumor Microvessels , 2001, The Journal of Biological Chemistry.

[128]  New transition-metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors. , 2003, Chemistry.

[129]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[130]  T. Fitzwater,et al.  Potent 2′-amino-, and 2′-fluoro-2′- deoxyribonucleotide RNA inhibitors of keratinocyte growth factor , 1997, Nature Biotechnology.

[131]  Weihong Tan,et al.  Cancer cell targeting using multiple aptamers conjugated on nanorods. , 2008, Analytical chemistry.

[132]  Ralph Weissleder,et al.  Magnetic relaxation switches capable of sensing molecular interactions , 2002, Nature Biotechnology.

[133]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[134]  S. Jeon,et al.  A DNA Aptamer Prevents Influenza Infection by Blocking the Receptor Binding Region of the Viral Hemagglutinin* , 2004, Journal of Biological Chemistry.

[135]  Robert Langer,et al.  Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles , 2008, Proceedings of the National Academy of Sciences.

[136]  R. Buhmann,et al.  Aptamers—basic research, drug development, and clinical applications , 2005, Applied Microbiology and Biotechnology.

[137]  Robert Langer,et al.  An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. , 2006, Angewandte Chemie.

[138]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[139]  Ralph Weissleder,et al.  Magnetic sensors for protease assays. , 2003, Angewandte Chemie.

[140]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[141]  Yi Lu,et al.  Label‐Free Colorimetric Detection of Lead Ions with a Nanomolar Detection Limit and Tunable Dynamic Range by using Gold Nanoparticles and DNAzyme , 2008 .

[142]  Hongjie Dai,et al.  Carbon Nanotubes: Synthesis, Integration, and Properties , 2003 .

[143]  M. Strano,et al.  Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. , 2006, Journal of the American Chemical Society.

[144]  Hans Wolf,et al.  An aptamer-based quartz crystal protein biosensor. , 2002, Analytical chemistry.

[145]  I. Willner,et al.  Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. , 2005, The journal of physical chemistry. B.

[146]  Sarah E. Baker,et al.  Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes: Synthesis and Hybridization , 2002 .

[147]  Ronghua Yang,et al.  Carbon nanotubes protect DNA strands during cellular delivery. , 2008, ACS nano.

[148]  Ralph Weissleder,et al.  Magnetic relaxation switch immunosensors detect enantiomeric impurities. , 2004, Angewandte Chemie.

[149]  N. Seeman DNA in a material world , 2003, Nature.

[150]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[151]  Juewen Liu,et al.  A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures. , 2006, Angewandte Chemie.

[152]  Yingfu Li,et al.  Nucleic acid aptamers and enzymes as sensors. , 2006, Current opinion in chemical biology.

[153]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[154]  Ralph Weissleder,et al.  Magnetic Nanosensors for the Detection of Oligonucleotide Sequences. , 2001, Angewandte Chemie.

[155]  Yan Du,et al.  Multifunctional label-free electrochemical biosensor based on an integrated aptamer. , 2008, Analytical chemistry.

[156]  Yi Xiao,et al.  Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. , 2004, Journal of the American Chemical Society.

[157]  E. Wang,et al.  Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. , 2007, Chemical communications.

[158]  Shaojun Dong,et al.  Ultrasensitive colorimetric detection of protein by aptamer-Au nanoparticles conjugates based on a dot-blot assay. , 2008, Chemical communications.

[159]  Bingling Li,et al.  SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. , 2007, Chemical communications.

[160]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[161]  J. Szostak,et al.  Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures , 1992, Nature.

[162]  Yingfu Li,et al.  Simple and Rapid Colorimetric Biosensors Based on DNA Aptamer and Noncrosslinking Gold Nanoparticle Aggregation , 2007, Chembiochem : a European journal of chemical biology.

[163]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[164]  M Yarus,et al.  Diversity of oligonucleotide functions. , 1995, Annual review of biochemistry.

[165]  Itamar Willner,et al.  Electronic aptamer-based sensors. , 2007, Angewandte Chemie.

[166]  Huixiang Li,et al.  Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. , 2005, Analytical chemistry.

[167]  Guo-Li Shen,et al.  Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. , 2007, Analytical chemistry.

[168]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[169]  Huixiang Li,et al.  Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[170]  Robert Langer,et al.  Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. , 2007, Nano letters.

[171]  Chris Dwyer,et al.  DNA-functionalized single-walled carbon nanotubes , 2002 .

[172]  D. Zichi,et al.  Kinetic analysis of site-specific photoaptamer-protein cross-linking. , 2004, Journal of molecular biology.

[173]  Atsushi Ogawa,et al.  Aptamer selection for the inhibition of cell adhesion with fibronectin as target. , 2004, Bioorganic & medicinal chemistry letters.

[174]  Jacques Vergne,et al.  Adenine-Aptamer Complexes , 2002, The Journal of Biological Chemistry.

[175]  Hui Zhang,et al.  Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. , 2005, Nano letters.

[176]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[177]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[178]  Koji Sode,et al.  Novel electrochemical sensor system for protein using the aptamers in sandwich manner. , 2005, Biosensors & bioelectronics.

[179]  Yi Lu,et al.  Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. , 2007, Analytical chemistry.

[180]  Ronghua Yang,et al.  Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. , 2008, Analytical chemistry.

[181]  Chih-Ching Huang,et al.  Detection of mercury(II) based on Hg2+ -DNA complexes inducing the aggregation of gold nanoparticles. , 2008, Chemical communications.

[182]  Itamar Willner,et al.  Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. , 2008, Angewandte Chemie.

[183]  B. Sullenger,et al.  Aptamers: an emerging class of therapeutics. , 2005, Annual review of medicine.

[184]  M. Yarus,et al.  Small RNA-divalent domains. , 1996, RNA.