Statistical Tests of Anisotropy for Fractional Brownian Textures. Application to Full-field Digital Mammography

In this paper, we propose a new and generic methodology for the analysis of texture anisotropy. The methodology is based on the stochastic modeling of textures by anisotropic fractional Brownian fields. It includes original statistical tests that permit to determine whether a texture is anisotropic or not. These tests are based on the estimation of directional parameters of the fields by generalized quadratic variations. Their construction is founded on a new theoretical result about the convergence of test statistics, which is proved in the paper. The methodology is applied to simulated data and discussed. We show that on a database composed of 116 full-field digital mammograms, about 60 percent of textures can be considered as anisotropic with a high level of confidence. These empirical results strongly suggest that anisotropic fractional Brownian fields are better-suited than the commonly used fractional Brownian fields to the modeling of mammogram textures.

[1]  M. Yaffe,et al.  Characterisation of mammographic parenchymal pattern by fractal dimension. , 1990, Physics in medicine and biology.

[2]  Jean-François Coeurjolly Inférence statistique pour les mouvements browniens fractionnaires et multifractionnaires. (Statistical inference for fractional and multifractional Brownian motions) , 2000 .

[3]  松原 友子 Third International Workshop on Digital Mammography に参加して , 1996 .

[4]  John J Heine,et al.  Spectral analysis of full field digital mammography data. , 2002, Medical physics.

[5]  M. Fox,et al.  Fractal feature analysis and classification in medical imaging. , 1989, IEEE transactions on medical imaging.

[6]  A. Kolmogorov Wienersche spiralen und einige andere interessante Kurven in Hilbertscen Raum, C. R. (doklady) , 1940 .

[7]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[8]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[9]  S. Krantz Fractal geometry , 1989 .

[10]  M. Alliaume,et al.  Probabilites et Statistiques. , 1932 .

[11]  Murray D. Burke,et al.  Strong Approximations in Probability and Statistics , 2011, International Encyclopedia of Statistical Science.

[12]  A. Burgess,et al.  Human observer detection experiments with mammograms and power-law noise. , 2001, Medical physics.

[13]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  N. Boyd,et al.  Automated analysis of mammographic densities. , 1996, Physics in medicine and biology.

[15]  Robert C. Dalang,et al.  A Minicourse on Stochastic Partial Differential Equations , 2008 .

[16]  J. Heine,et al.  Mammographic tissue, breast cancer risk, serial image analysis, and digital mammography. Part 2. Serial breast tissue change and related temporal influences. , 2002, Academic radiology.

[17]  Rachid Harba,et al.  Estimation of the 3D self-similarity parameter of trabecular bone from its 2D projection , 2007, Medical Image Anal..

[18]  W. Ohley,et al.  Fractal Analysis of Radiographic Trabecular Bone Texture and Bone Mineral Density: Two Complementary Parameters Related to Osteoporotic Fractures , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[19]  Michael L. Stein,et al.  Fast and Exact Simulation of Fractional Brownian Surfaces , 2002 .

[20]  Murugesu Sivapalan,et al.  Influence of Indian Ocean sea surface temperature variability on southwest Western Australian winter rainfall , 2006 .

[21]  John N. Wolfe,et al.  A Study of Breast Parenchyma by Mammography In the Normal Woman and Those with Benign and Malignant Disease , 1967 .

[22]  John T. Kent,et al.  Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .

[23]  Anne Estrade,et al.  Anisotropic Analysis of Some Gaussian Models , 2003 .

[24]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[25]  Yimin Xiao Sample Path Properties of Anisotropic Gaussian Random Fields , 2009 .

[26]  P. Abry,et al.  Wavelets, spectrum analysis and 1/ f processes , 1995 .

[27]  John N. Wolfe,et al.  Mammography: Ducts as a Sole Indicator of Breast Carcinoma1 , 1967 .

[28]  Lionel Moisan,et al.  A-contrario Detectability of Spots in Textured Backgrounds , 2009, Journal of Mathematical Imaging and Vision.

[29]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[30]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Rachid Harba,et al.  A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform , 2005, BMC Medical Imaging.

[32]  Arnaud Bégyn Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes , 2007, 0709.0598.

[33]  J. Heine,et al.  Mammographic tissue, breast cancer risk, serial image analysis, and digital mammography. Part 1. Tissue and related risk factors. , 2002, Academic radiology.

[34]  Hermine Bierm'e,et al.  Estimation of anisotropic Gaussian fields through Radon transform , 2006, math/0602663.

[35]  Identifying the Anisotropical Function of a d-Dimensional Gaussian Self-similar Process with Stationary Increments , 2007 .

[36]  F Merletti,et al.  Mammographic features of the breast and breast cancer risk. , 1982, American journal of epidemiology.

[37]  Mark M. Meerschaert,et al.  Operator scaling stable random fields , 2006 .

[38]  Alain Arneodo,et al.  WAVELET-BASED MULTIFRACTAL FORMALISM TO ASSIST IN DIAGNOSIS IN DIGITIZED MAMMOGRAMS , 2011 .

[39]  E. Fishell,et al.  Radio-free America: what to do with the waste. , 1994, Environmental health perspectives.

[40]  Murad S. Taqqu,et al.  Semi-parametric estimation of the long-range dependence parameter : A survey , 2003 .

[41]  Ina,et al.  WAVELET-BASED MULTIFRACTAL FORMALISM TO ASSIST IN DIAGNOSIS IN DIGITIZED MAMMOGRAMS , 2001 .

[42]  Peter Hall,et al.  Fractal analysis of surface roughness by using spatial data , 1999 .

[43]  N F Boyd,et al.  Automated analysis of mammographic densities and breast carcinoma risk , 1997, Cancer.

[44]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[45]  S. Kay,et al.  Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture , 1986, IEEE Transactions on Medical Imaging.

[46]  D. Nualart Fractional Brownian motion , 2006 .

[47]  R P Velthuizen,et al.  On the statistical nature of mammograms. , 1999, Medical physics.

[48]  David A. Benson,et al.  Aquifer operator scaling and the effect on solute mixing and dispersion , 2006 .