An efficient atomic orbital based second-order Møller-Plesset gradient program.

Based on the orbital-invariant atomic orbital formulation of the MP2 (Møller-Plesset second-order perturbation theory) energy and gradient [P. Pulay and S. Saebø, Theor. Chim. Acta 69, 357 (1986)], we have derived and programmed detailed working equations for closed-shell MP2 gradients. The orbital-invariant form avoids the difficulties of other formulations with frozen orbitals, and allows the use of arbitrary occupied orbitals, an important consideration for local correlation theories, although the present program uses canonical molecular orbitals. The atomic orbital formulation offers savings both in storage and computer time. Test calculations on systems containing up to approximately 100 atoms and approximately 1000 basis functions, performed on a single personal computer, are reported. Parallelization of the code is underway.

[1]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[2]  Ida M. B. Nielsen,et al.  A new direct MP2 gradient algorithm with implementation on a massively parallel computer , 1996 .

[3]  Wilfried Meyer,et al.  Theory of self‐consistent electron pairs. An iterative method for correlated many‐electron wavefunctions , 1976 .

[4]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[5]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[6]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[7]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[8]  Julia E. Rice,et al.  Implementation of analytic derivative methods in quantum chemistry , 1989 .

[9]  J. Šponer,et al.  C−H···O Contacts in the Adenine···Uracil Watson−Crick and Uracil···Uracil Nucleic Acid Base Pairs: Nonempirical ab Initio Study with Inclusion of Electron Correlation Effects , 2000 .

[10]  Alistair P. Rendell,et al.  A parallel second-order Møller-Plesset gradient , 1997 .

[11]  E. Hylleraas Über den Grundterm der Zweielektronenprobleme von H−, He, Li+, Be++ usw. , 1930 .

[12]  T. Walsh An ab initio study of the low energy structures of the naphthalene dimer , 2002 .

[13]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[14]  Peter Pulay,et al.  An efficient reformulation of the closed‐shell self‐consistent electron pair theory , 1984 .

[15]  Jon Baker,et al.  An efficient parallel algorithm for the calculation of canonical MP2 energies , 2002, J. Comput. Chem..

[16]  Trygve Helgaker,et al.  A numerically stable procedure for calculating Møller-Plesset energy derivatives, derived using the theory of Lagrangians , 1989 .

[17]  Mark S. Gordon,et al.  The Distributed Data Interface in GAMESS , 2000 .

[18]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[19]  Henry F. Schaefer,et al.  Analytic second derivative techniques for self-consistent-field wave functions. A new approach to the solution of the coupled perturbed hartree-fock equations , 1983 .

[20]  Julia E. Rice,et al.  The elimination of singularities in derivative calculations , 1985 .

[21]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[22]  Guntram Rauhut,et al.  Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory , 1998 .

[23]  Martin Head-Gordon,et al.  An improved semidirect MP2 gradient method , 1999 .

[24]  Peter Pulay,et al.  Second and third derivatives of variational energy expressions: Application to multiconfigurational self‐consistent field wave functions , 1983 .

[25]  Peter Pulay,et al.  Efficient calculation of canonical MP2 energies , 2001 .

[26]  J. Garza,et al.  Conformational Analysis of N,N,N‘,N‘-Tetramethylsuccinamide: The Role of C−H···O Hydrogen Bonds , 2000 .

[27]  R. Bartlett,et al.  Analytical gradient evaluation in coupled-cluster theory , 1985 .

[28]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[29]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[30]  J. Šponer,et al.  MP2 and CCSD(T) study on hydrogen bonding, aromatic stacking and nonaromatic stacking , 1997 .

[31]  Mark S. Gordon,et al.  A derivation of the frozen-orbital unrestricted open-shell and restricted closed-shell second-order perturbation theory analytic gradient expressions , 2003 .

[32]  Peter Pulay,et al.  A low-scaling method for second order Møller–Plesset calculations , 2001 .

[33]  Reinhart Ahlrichs,et al.  Semidirect MP2 gradient evaluation on workstation computers: The MPGRAD program , 1993, J. Comput. Chem..

[34]  Richard A. Friesner,et al.  Accurate ab Initio Quantum Chemical Determination of the Relative Energetics of Peptide Conformations and Assessment of Empirical Force Fields , 1997 .

[35]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[36]  R. Bartlett,et al.  Analytical gradients for the coupled-cluster method† , 1984 .