Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model

Abstract The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively, improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.

[1]  D. Pham Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems , 2001 .

[2]  L. M. Berliner,et al.  Approximate importance sampling Monte Carlo for data assimilation , 2007 .

[3]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[4]  Fan Bai,et al.  Distributed Particle Filters for Data Assimilation in Simulation of Large Scale Spatial Temporal Systems , 2014 .

[5]  G. Kivman,et al.  Sequential parameter estimation for stochastic systems , 2003 .

[6]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[7]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[8]  H. Johnson,et al.  A comparison of 'traditional' and multimedia information systems development practices , 2003, Inf. Softw. Technol..

[9]  Application of scale‐selective data assimilation to tropical cyclone track simulation , 2010 .

[10]  Gift Dumedah,et al.  Evaluating forecasting performance for data assimilation methods: The ensemble Kalman filter, the particle filter, and the evolutionary-based assimilation , 2013 .

[11]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[12]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[13]  Alexander Y. Sun,et al.  Comparison of deterministic ensemble Kalman filters for assimilating hydrogeological data , 2009 .

[14]  Florian Pappenberger,et al.  A data assimilation approach to discharge estimation from space , 2009 .

[15]  Jasper A. Vrugt,et al.  Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications (online first) , 2012 .

[16]  D. Menemenlis Inverse Modeling of the Ocean and Atmosphere , 2002 .

[17]  Joseph L. Awange,et al.  Independent patterns of water mass anomalies over Australia from satellite data and models , 2012 .

[18]  Herman Gerritsen,et al.  Application of generic data assimilation tools (DATools) for flood forecasting purposes , 2010, Comput. Geosci..

[19]  M. Dowd A sequential Monte Carlo approach for marine ecological prediction , 2006 .

[20]  Lars Nerger,et al.  Ensemble Data Assimilation , 2009 .

[21]  Maarten Speekenbrink,et al.  A tutorial on particle filters , 2016 .

[22]  G. Evensen,et al.  Data assimilation and inverse methods in terms of a probabilistic formulation , 1996 .

[23]  J. Hansen,et al.  Implications of Stochastic and Deterministic Filters as Ensemble-Based Data Assimilation Methods in Varying Regimes of Error Growth , 2004 .

[24]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[25]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[26]  Michelle F. Thomsen,et al.  First attempt at assimilating data to constrain a magnetospheric model , 1999 .

[27]  Xuguang Wang,et al.  A Comparison of Breeding and Ensemble Transform Kalman Filter Ensemble Forecast Schemes , 2003 .

[28]  T. Hamill,et al.  Using Improved Background-Error Covariances from an Ensemble Kalman Filter for Adaptive Observations , 2002 .

[29]  P. Tregoning,et al.  Quantifying GRACE data contamination effects on hydrological analysis in the Murray–Darling Basin, southeast Australia , 2010 .

[30]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[31]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[32]  A. B. Smith,et al.  The Murrumbidgee soil moisture monitoring network data set , 2012 .

[33]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[34]  Michael J. Stewardson,et al.  Comparison of six rainfall-runoff modelling approaches , 1993 .

[35]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[36]  G. Lannoy,et al.  The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter , 2011 .

[37]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[38]  Dinh-Tuan Pham,et al.  Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters* , 2011, 1108.0168.

[39]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[40]  J. Famiglietti,et al.  Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE , 2007 .

[41]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[42]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[43]  Olga Didova,et al.  Comparisons of atmospheric mass variations derived from ECMWF reanalysis and operational fields, over 2003–2011 , 2014, Journal of Geodesy.

[44]  Ibrahim Hoteit,et al.  A Comparison of Ensemble Kalman Filters for Storm Surge Assimilation , 2014 .

[45]  Soroosh Sorooshian,et al.  Evolution of ensemble data assimilation for uncertainty quantification using the particle filter‐Markov chain Monte Carlo method , 2012 .

[46]  G. Evensen,et al.  Sequential Data Assimilation Techniques in Oceanography , 2003 .

[47]  Dinh-Tuan Pham,et al.  A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific , 2002 .

[48]  Frédéric Frappart,et al.  Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation , 2013 .

[49]  Local to Regional Hydrological Model Calibration for the Okavango River Basin from In-situ and Space Borne Gravity Observations , 2007 .

[50]  Dennis McLaughlin,et al.  An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering , 2002 .

[51]  Peter R. Oke,et al.  A deterministic formulation of the ensemble Kalman filter : an alternative to ensemble square root filters , 2008 .

[52]  J. Famiglietti,et al.  A GRACE‐based water storage deficit approach for hydrological drought characterization , 2014 .

[53]  Dinh-Tuan Pham,et al.  A New Approximate Solution of the Optimal Nonlinear Filter for Data Assimilation in Meteorology and Oceanography , 2008 .

[54]  Yang Zhang,et al.  Real-time air quality forecasting, part I: History, techniques, and current status , 2012 .

[55]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[56]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[57]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[58]  Istvan Szunyogh,et al.  A local ensemble Kalman filter for atmospheric data assimilation , 2004 .

[59]  T. Huntington Evidence for intensification of the global water cycle: Review and synthesis , 2006 .

[60]  G. Evensen Sampling strategies and square root analysis schemes for the EnKF , 2004 .

[61]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[62]  Stefan Rahmstorf,et al.  A decade of weather extremes , 2012 .

[63]  Peter R. Oke,et al.  A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters , 2008 .

[64]  Sequential data assimilation for streamflow forecasting using a distributed hydrologic model: particle filtering and ensemble Kalman filtering , 2013 .

[65]  P. Houtekamer,et al.  A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .

[66]  J. Kusche,et al.  A systematic impact assessment of GRACE error correlation on data assimilation in hydrological models , 2016, Journal of Geodesy.

[67]  Jeffrey P. Walker,et al.  Hydrologic Data Assimilation , 2012 .

[68]  Jetse D. Kalma,et al.  Regional-scale hydrological modelling using multiple-parameter landscape zones and a quasi-distributed water balance model , 2001 .

[69]  R. Houborg,et al.  Drought indicators based on model‐assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations , 2012 .

[70]  A. Lorenc,et al.  Atmospheric modelling, data assimilation and predictability. By Eugenia Kalnay. Cambridge University Press. 2003. pp. xxii + 341. ISBNs 0 521 79179 0, 0 521 79629 6. , 2003 .

[71]  Hubert H. G. Savenije,et al.  The design of an optimal filter for monthly GRACE gravity models , 2008 .

[72]  Matthew Rodell,et al.  Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity , 2007 .

[73]  W. Keller,et al.  GRACE hydrological monitoring of Australia: Current limitations and future prospects , 2009 .

[74]  Henk Eskes,et al.  The Assimilation of Envisat data (ASSET) project , 2006 .

[75]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[76]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[77]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[78]  Ibrahim Hoteit,et al.  Mitigating Observation Perturbation Sampling Errors in the Stochastic EnKF , 2015 .

[79]  A. Weerts,et al.  Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models , 2006 .

[80]  G. Lannoy,et al.  Assimilating SAR-derived water level data into a hydraulic model: A case study , 2011 .

[81]  K. Koch Introduction to Bayesian Statistics , 2007 .

[82]  Y. Hundecha,et al.  Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide , 2017, Climatic Change.

[83]  Peter R. Oke,et al.  The Bluelink ocean data assimilation system (BODAS) , 2008 .

[84]  Lin Wu,et al.  Bayesian design of control space for optimal assimilation of observations. Part I: Consistent multiscale formalism , 2011 .

[85]  D. Lettenmaier,et al.  Measuring surface water from space , 2004 .

[86]  Fredrik Gustafsson,et al.  On Resampling Algorithms for Particle Filters , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[87]  S. Swenson,et al.  Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity , 2002 .

[88]  A. Weerts,et al.  Data assimilation of GRACE terrestrial water storage estimates into a regional hydrological model of the Rhine River basin , 2014 .

[89]  P. Tregoning,et al.  Assessment of GRACE satellites for groundwater estimation in Australia , 2012 .

[90]  J. Verron,et al.  Comparison of reduced-order, sequential and variational data assimilation methods in the tropical Pacific Ocean , 2006, 0709.2808.

[91]  Beate Klinger,et al.  ITSG-Grace2014: a new GRACE gravity field release computed in Graz , 2014 .

[92]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[93]  Sebastian Reich,et al.  A mollified ensemble Kalman filter , 2010, 1002.3091.

[94]  W. Wagner,et al.  Improving runoff prediction through the assimilation of the ASCAT soil moisture product , 2010 .

[95]  D. Joanes,et al.  Comparing measures of sample skewness and kurtosis , 1998 .

[96]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[97]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[98]  Huidong Jin,et al.  Continental satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment , 2014 .

[99]  Keith Beven,et al.  Detection of structural inadequacy in process‐based hydrological models: A particle‐filtering approach , 2008 .

[100]  Ibrahim Hoteit,et al.  Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model , 2012 .

[101]  Bailing Li,et al.  Assimilation of GRACE Terrestrial Water Storage Observations into a Land Surface Model for the Assessment of Regional Flood Potential , 2015, Remote. Sens..

[102]  Joseph L. Awange,et al.  Quantifying the impacts of ENSO and IOD on rain gauge and remotely sensed precipitation products over Australia , 2016 .

[103]  Ibrahim Hoteit,et al.  Efficient data assimilation into a complex, 3-D physical-biogeochemical model using partially-local Kalman filters , 2005 .

[104]  Satellite observations used in the Australian Water Resources Assessment system , 2010 .

[105]  Peter R. Oke,et al.  Impacts of localisation in the EnKF and EnOI: experiments with a small model , 2007 .

[106]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[107]  Hendrik Elbern,et al.  Ozone episode analysis by four-dimensional variational chemistry data assimilation , 2001 .

[108]  Eric F. Wood,et al.  Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide , 2013 .

[109]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[110]  J. Kusche,et al.  Calibration/Data Assimilation Approach for Integrating GRACE Data into the WaterGAP Global Hydrology Model (WGHM) Using an Ensemble Kalman Filter: First Results , 2013, Surveys in Geophysics.

[111]  C. Gouriéroux,et al.  Non-Gaussian State-Space Modeling of Nonstationary Time Series , 2008 .

[112]  M. Rodell,et al.  Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin , 2008 .

[113]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[114]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[115]  Robert W. Schunk,et al.  USU global ionospheric data assimilation models , 2004, SPIE Optics + Photonics.

[116]  P. Tregoning,et al.  A global water cycle reanalysis (2003-2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble , 2013 .

[117]  Kuolin Hsu,et al.  Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter , 2005 .

[118]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[119]  Jeffrey L. Anderson EXPLORING THE NEED FOR LOCALIZATION IN ENSEMBLE DATA ASSIMILATION USING A HIERARCHICAL ENSEMBLE FILTER , 2007 .