Design of coupling for mixed synchronization in chaotic oscillators

We report a design of coupling in chaotic oscillators for realizing a desired response: complete synchronization, antisynchronization and amplitude death simultaneously in different state variables of a system and thereby targeting a control of synchronization. This is robust to parameter mismatch and the route of transition to synchrony obeys a scaling law. Experimental evidence of the coupling is presented using an electronic circuit.

[1]  Ramakrishna Ramaswamy,et al.  Phase-flip bifurcation induced by time delay. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Adonis Bogris,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2006, SPIE/OSA/IEEE Asia Communications and Photonics.

[3]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[4]  S. K. Dana,et al.  Antisynchronization of Two Complex Dynamical Networks , 2009, Complex.

[5]  Ying-Cheng Lai,et al.  ANTIPHASE SYNCHRONISM IN CHAOTIC SYSTEMS , 1998 .

[6]  Sen,et al.  Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators , 1998, Physical review letters.

[7]  Jürgen Kurths,et al.  Complex Dynamics in Physiological Systems: From Heart to Brain , 2009 .

[8]  Tingwen Huang,et al.  Coexistence of anti-phase and complete synchronization in coupled chen system via a single variable , 2008 .

[9]  Julio M Ottino,et al.  Rhythm Engineering , 2007, Science.

[10]  Syamal K. Dana,et al.  Comprar Complex Dynamics in Physiological Systems: From Heart to Brain | Dana, Syamal K. | 9781402091421 | Springer , 2009 .

[11]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[12]  Hiroshi Kori,et al.  Engineering Complex Dynamical Structures: Sequential Patterns and Desynchronization , 2007, Science.

[13]  Jürgen Kurths,et al.  Synchronization between two coupled complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Jürgen Kurths,et al.  Phase synchronization of chaotic systems , 2001 .

[15]  P. K. Roy,et al.  Design of coupling for synchronization of chaotic oscillators. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Arkady Pikovsky,et al.  A universal concept in nonlinear sciences , 2006 .

[17]  P. K. Roy,et al.  Designing coupling for synchronization and amplification of chaos. , 2008, Physical review letters.

[18]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .