High order numerical schemes for transport equations on bounded domains

This article is an account of the NABUCO project achieved during the summer camp CEMRACS 2019 devoted to geophysical fluids and gravity flows. The goal is to construct finite difference approximations of the transport equation with nonzero incoming boundary data that achieve the best possible convergence rate in the maximum norm. We construct, implement and analyze the so-called inverse Lax-Wendroff procedure at the incoming boundary. Optimal convergence rates are obtained by combining sharp stability estimates for extrapolation boundary conditions with numerical boundary layer expansions. We illustrate the results with the Lax-Wendroff and O3 schemes.

[1]  Bruno Desprésaff n Finite volume transport schemes , 2008 .

[2]  Benjamin Boutin,et al.  Stability of finite difference schemes for hyperbolic initial boundary value problems: numerical boundary layers , 2015 .

[3]  Benjamin J. Keele,et al.  Cambridge University Press v. Georgia State University , 2016 .

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  Vidar Thomée,et al.  Stability of difference schemes in the maximum-norm☆ , 1965 .

[6]  Chi-Wang Shu,et al.  Inverse Lax–Wendroff Procedure for Numerical Boundary Treatment of Hyperbolic Equations , 2017 .

[7]  Fr'ed'eric Lagoutiere,et al.  The Neumann numerical boundary condition for transport equations , 2018, Kinetic & Related Models.

[8]  Moshe Goldberg On a boundary extrapolation theorem by Kreiss , 1977 .

[9]  Ioan Gavrea,et al.  A note on divided differences , 2015 .

[10]  Sylvie Benzoni-Gavage,et al.  Multi-dimensional hyperbolic partial differential equations , 2006 .

[11]  Chi-Wang Shu,et al.  Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws , 2010, J. Comput. Phys..

[12]  Antoine Gloria,et al.  Semigroup stability of finite difference schemes for multidimensional hyperbolic initial-boundary value problems , 2010, Math. Comput..

[13]  G. Strang Trigonometric Polynomials and Difference Methods of Maximum Accuracy , 1962 .

[14]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[15]  Sylvie Benzoni-Gavage,et al.  Multidimensional hyperbolic partial differential equations : first-order systems and applications , 2006 .

[16]  Bruno Després,et al.  Inverse Lax-Wendroff boundary treatment for compressible Lagrange-remap hydrodynamics on Cartesian grids , 2018, J. Comput. Phys..

[17]  Bruno Després,et al.  Finite volume transport schemes , 2008, Numerische Mathematik.

[18]  Chi-Wang Shu,et al.  Development and stability analysis of the inverse Lax−Wendroff boundary treatment for central compact schemes , 2015 .

[19]  Eitan Tadmor,et al.  Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II , 1978 .

[20]  H. Kreiss,et al.  Stability Theory of Difference Approximations for Mixed Initial Boundary Value Problems. II , 1972 .

[21]  Chang Yang,et al.  An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models , 2012, J. Comput. Phys..

[22]  E. Tadmor,et al.  Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II , 1978 .

[23]  Heinz-Otto Kreiss,et al.  Difference approximations for hyperbolic differential equations , 1966 .